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Project Summary 

Project Summary 

Purpose 
The Nil000 Recognition Accelerator chip was developed by Nestor and Intel for the 
Defense Advanced Research Projects Agency to provide a processor with built-in 
neural network intelligence. 

This document presents the project results. 

Neural Network Brief 
A neural network is an interconnected group of simple processing elements that is able 
to adapt to its environment, or learn, in a way that is similar to the way that the human 
mind learns. Artificial neural networks emulate the internal structure and behavior of 
human neural networks by using building blocks with similar behaviors and 
assembling them in a similar fashion. 

Neural networks' ability to solve problems is a combination of the functions provided 
by processing elements, called neurons, and the interconnections among the neurons. 
Neural networks can solve very complex pattern classification problems, develop 
solutions independently and generalize based on limited data. 

NilOOO Chip Brief 
The NilOOO chip implements a type of neural network model called a Radial Basis 
Function neural network which has the ability to group similar objects together, based 
on their radial distance from known objects in feature space. It also implements the 
RCE neural network, a general-purpose, adaptive pattern classification engine. 

The NilOOO is a neural network VLSI chip with 100 inputs connected to each unit of a 
layer of 1000 prototype storing and recognizing units, each such prototype united 
connected to each unit of a 50-unit categorizing output layer. The processing time is 
approximately 1 us per pass and a weight change time of 100 us for retention longer 
than 10 years. Inputs and outputs are digital and TTL compatible. 

Weight change calculations are executed on the chip. Silicon VLSI technology with 
polysilicon floating gates and thin oxides for tunnel elements are used to implement 
the electrically modifiable synapses in the network. Floating gate devices, 
programmed and erased by Fowler-Nordheim, tunneling through a thin dielectric were 
used. The NilOOO is packaged in a conventional pin grid array packaged with 168 
pins. 
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Introduction To Appendices 
The appendices which follow provide information on specific topics. 

Appendix A, Radial Basis Function (RBF) Neural Networks describes this particular 
type of neural work implemented by the Nil 000 chip. The RBF neural network is 
designed to group similar objects together, based on their radial distance from known 
objects in feature space. This appendix also provides general neural network concepts 
and information on additional neural network types. 

Appendix B, The RCE Neural Network describes this particular neural network type, 
which is also implemented by the Nil000 chip. The RCE neural network was 
designed as a general-purpose, adaptive pattern classification engine which can solve 
pattern recognition problems in which data classes are represented by disjoint class 
distributions, linearly and non-linearly separable class distributions, as well as non- 
separable classes whose class distributions overlap. 

Appendix C, Implementing Neural Networks Using The Nil 000 provides structural 
information and available commands for the Nil000 chip. 

Appendix D, Nil 000 Technical Specification provides detailed architectural and 
component information on the Nil000 chip. 

Appendix E, Nil 000 Recognition Accelerator User's Guide provides comprehensive 
hardware information and programming instructions. 
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RBF Neural Networks 

What is a Neural Network? 
A neural network is an interconnected group of simple processing elements that 
is able to adapt to its environment, or learn. The ability to solve problems is a 
combination of the functions provided by the processing elements, called 
neurons, and the interconnections among the neurons. As a neural network 
learns, it modifies some, or all, of the following: 

1. the number of neurons present in the network 
2. the behavior, or response, of each neuron 
3. the connections among neurons 

Studies of biological neural networks led to the development of the first 
artificial neural networks, which attempted to emulate the internal structure 
and behavior of biological neural networks using mathematical algorithms and 
computers. The intent was to exhibit some of the higher level behaviors 
attributable to biological neural networks by using building blocks with similar 
primitive behaviors and assembling them in a similar fashion. Subsequently, 
other neural network models have been developed that emulate some of the 
higher level behaviors of biological neural networks, even though they may not 
look much like models of biological neural networks at the primitive level. 

Neural networks can: 

•     solve very complex pattern classification problems with ease, such as: 

fraud detection 
financial trends analysis 
medical image analysis 
medical diagnostics 
target recognition 
guidance systems 

• machine vision 
• process control 
• industrial parts inspection 
• character recognition 
• fingerprint recognition 
• voice recognition 
• and more... 

develop solutions independently 

Through mechanisms of self organization, a neural network learns the 
solution to a problem based solely on examples of input data combined 
with simple feedback signals about the appropriateness of the network 
response. A network may also continue to learn and enhance its 
knowledge based on new input data. 

In other words, neural network algorithms are not solutions to applications, 
but a method by which the network can synthesize its own solution based 
on examples. 

generalize based on limited data 

The neural network is able to solve problems similar, but not identical, to 
those in the training data. 

11/7/95 



RBF Neural Networks 

The NilOOO implements a type of neural network model, or paradigm, called a 
Radial Basis Function (RBF) Neural Network. The term RBF refers to the 
network's ability to group similar objects together, based on their radial 
distance from known objects in feature space. 

Features, feature vectors and feature space 

In order to identify anything, some uniquely descriptive characteristics 
(features) of the object must be identified. In neural networks, a feature is a 
single measurable characteristic of a pattern, such as its length. Usually, a 
single feature is insufficient to distinguish among various patterns, so a set of 
features must be collected that is sufficient to distinguish among all of the types 
(classes) of patterns to be identified. A feature vector is an ordered list of 
feature values that describes a pattern well enough to identify, or classify, the 
pattern. 

If every possible combination of feature values were plotted, it would map out a 
multidimensional feature space. The number of dimensions would be the 
number of features used. Any of the points in this space is specified by a 
unique set of feature values and it is possible to determine the "distance" 
between any two of the points. This distance provides a means for determining 
how similar the original patterns are. 

Once a pattern is converted into a feature vector, it has been mapped to one of 
the points in the feature space. This feature vector is provided to the neural 
network to tell the it where the pattern fits into this feature space. When the 
network is learning, feature vectors are provided along with the correct identity, 
or class, of the object that they represent. This tells the neural network to 
which class the corresponding feature vector belongs. Some of the feature 
vectors are committed to neural memory, thereby becoming a. prototype. 

Once the network has learned everything it can from the available training 
data, it can then be asked to classify unknown patterns. Feature vectors 
describing the unknown patterns are presented to the network and it is asked to 
identify the class to which the pattern belongs. It finds the point in space 
corresponding to the feature vector and finds the nearest prototype(s) 
committed during learning. 

The recognition performance of a neural network classifier is directly related to 
the quality of the feature set selected. A thorough understanding of the 
intended application is essential to select features that distinguish among 
different objects that must be recognized while permitting the network to 
properly recognize similar, but not identical, examples of the same object. 

Because each application will require a unique set of features, no single set of 
features will suffice for all pattern recognition problems. 

APPLICATION SAMPLE FEA TURES 

Character Recognition the number of strokes 
the changes in direction of the stroke 
the coordinates of the beginning, ending, and 
intersecting points of strokes 
the coordinates of points of maximum curvature 
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Process Control temperature 
pressure 
flow rate 
spectral data 

Fraud Detection # of credit card purchases in a day, week, etc. 
date of purchase 
amount of purchase 
location of purchases 

Animal Recognition external covering (skin, fur, feathers) 
# of limbs 
offspring (born, hatched) 
where does it live? (land, air, water) 

How do you teach a neural network? 

In 75 Minutes to Your First Neural Network, you will be walked through the 
development of a neural network that recognizes types of animals. It uses the 
features listed above for Animal Recognition, plus a few more. That example is 
used here as well to illustrate the concepts. 

As with all training, the first step is to gather sample data. First, it is necessary 
to identify the classes or types of animals to be identified. It is important to 
ensure that the features selected are sufficient to distinguish any of these classes 
from any other. Then, create training examples that include the description of 
various types of animals by using the selected features, along with the correct 
answer. By presenting the set of feature values, along with the correct answer, 
the neural network will learn that this "point" in the feature space is an 
example (or prototype) of one of the classes. Later, when other patterns with 
slightly different feature values are presented, the neural network will be able to 
locate the prototype that most closely approximates the new pattern. This is 
similar to a child that classifies a zebra as a horse. If zebra is not one of the 
known classes and horse is, horse is probably the best approximation to the 
correct answer. 

Neural networks can also return a confidence value that reflects just how 
similar the pattern was to one of the prototypes. This can be used to ensure that 
a snake isn't classified as a crocodile, just becase the crocodile was the longest 
thing in the training set. This confidence level can also be used to select the 
best answer when the neural network finds multiple prototypes that are similar 
to the new pattern. 

In order to see how well the neural network has learned about animals, it 
should be testing using some animals that were not used in the training set. 
This helps to identify where additional training data may be necessary or where 
there are weaknesses in the selected feature set. 

A neural network must use its best "judgement" when a feature vector does not 
point directly to a prototype. Responses are one of: 
• identified, if one identification with adequate confidence occurred 
• uncertain, if multiple identifications of adequate confidence occurred 
• unidentified, if no identification of adequate confidence occurred 
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Selecting a Set of Features 

When selecting features, it is usually not sufficient to select the obvious 
characteristics. Sometimes, these are extraneous, that is, other features already 
provide the same information and are more effective. Including extraneous 
features makes the feature space, and the neural network that maps that space, 
excessively large. Some features can be useless, since they may describe the 
object, but do nothing to discriminate one from another. These also needlessly 
increase the size of the feature space. Others can be confusing because they are 
sometimes, but not always true. A possible example for animals is color. 
White or brown may be found among several of the classes of animals to be 
identified, yet within one class, some may be white or brown and others may be 
black. 

Some classification problems already have ready-to-use features. Process 
control problems are often like this. They use sensor data that is exactly the 
information required to identify normal and abnormal classes of observations. 
This can be fed directly, or with little modification, into the neural network. 
However, many problems are not so simple. For example, character 
recognition does not typically feed a page full of image pixels directly to the 
neural network. Instead, it does some image preprocessing first. This 
processing of raw data to produce the desired features is called feature 
extraction. 

Feature Extraction 

Feature extraction is the generation of a set of feature values which can 
adequately describe a pattern to the neural network. It is the process of 
converting raw data into an alternate representation that can be used more 
efficiently for identification. 

In our animal classification problem, some mechanism must determine the type 
of covering (skin, fur, scales or feathers) and count limbs. 

Training data 

In addition to selecting descriptive and discriminating features and providing a 
means to extract them from the raw data, the selection of the training examples 
is crucial. First, it is necessary to provide examples of all of the kinds (classes) 
of patterns to be recognized. In our animal example, we would not expect the 
neural network to recognize dogs if we provided no examples of dogs. Because 
of the feature set that we chose, we would not need many examples of dogs, but 
there are those occasional dogs with a missing leg. Without an example of a 
dog with a missing leg, we are not certain what the neural network would call 
the dog with three legs, although it would likely call it a dog. But, what if the 
dog had only two legs? 
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Nil 000 Neural Network Paradigms 

A neural network paradigm (or model) consists of three components: its structure, its learning algorithm 
and its classification algorithm. The NilOOO provides one network structure, a Radial Basis Function 
using "city-block" distances in feature space, two built-in learning algorithms (plus an ability to do 
learning externally or program in custom algorithms) and two classification algorithms (or transfer 
functions). 

The learning algorithms are: 
1. Probabilistic Neural Network (PNN). This algorithm "memorizes" all of the input patterns, that is, it 

stores every training pattern as a prototype. Additionally, it keeps track of how many examples of 
each case occurred in the training set. This helps when the neural network is unsure of which way to 
go between possible choices. It uses this information to cause the network to be more likely to choose 
the class that occurs more often in the training set. 

2. Restricted Coulomb Energy (RCE). This algorithm creates an "influence field' around each 
prototype that it stores. If another training example is presented that falls within the field and is of 
the same class, the latter example is not stored, since there is sufficient knowledge already present to 
properly classify that point. However, if a training example is presented that falls within the field and 
is of a different class, the field of the former prototype is reduced in size so that it does not contain the 
new pattern. Any time a pattern is presented that is not covered by the field of an existing prototype, 
it is committed as a new prototype. As in PNN, the patterns that RCE does not store are not ignored. 
They are counted and are used to bias decisions when there are multiple nearby prototypes. 

The classification algorithms are: 
1. Deterministic. If a feature vector falls within the influence field of an existing prototype, the feature 

vector is identified as belonging to the class of that prototype. It is possible to produce uncertain 
results, in which a feature vector falls within the influence field of more than one prototype. 

2. Probabilistic. An exponentially decaying (Gaussian) function of the distance from the prototype to 
the feature vector's point in feature space is calculated. After weighting it (multiplying) by the count 
of training examples attributed to that prototype, a "raw" probability is produced. All of the 
contributions of all prototypes of a given class are summed to produce & probability density for that 
class. These can then be normalized, i.e. each is divided by the sum of all probability densities for all 
classes. This results in an estimated probability that this classification is correct, based on the 
training information provided. 

The paradigms that result from the three valid combinations are: 
1. PNN: PNN learning and Probabilistic classification. 
2. RCE: RCE learning and Deterministic classification 
3. PRCE: RCE learning and Probabilistic classification 

Learning with Radial Basis Functions 

These are all RBF (Radial Basis Function) types of neural networks, so named 
because they are created from radially symmetric clasification functions 
(influence fields and Gaussian functions) of the data inputs. 

RBF networks have been applied to function approximation and pattern 
recognition problems. They have the capability of representing arbitrary 
functions and they converge quickly, resulting in rapid training. The reliability 
of the output generated by an RBF network may be affected by the features used 
for training and the volume of data used for training. Improvements in 
accuracy may occur by using a larger training set and/or better features. 
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RCE 

Suggesting that one type of neural network paradigm is better than another is 
inappropriate, since the optimal type of paradigm to use may vary depending on 
the pattern recognition problem at hand and the training data available. 
Recognition memories for the same application could even be generated in 
different ways using each of the RBF paradigms mentioned above. The quality 
of these memories needs to be thoroughly tested in order to determine which 
method may be more suited to solve a specific pattern application problem. A 
brief description of each of the three paradigms is provided below in order to 
assist you in selecting an appropriate neural network paradigm to initially try 
with your application. 

RCE is a three-layered, feed-forward, "deterministic" neural network paradigm 
of radius-limited prototypes. 

The objective in pattern classification is to process input pattern vectors of 
specified classes (or categories) and to determine an appropriate class response. 
When an input pattern vector is presented to an RCE network, it appears as a 
pattern of activities on the input layer. The RCE network covers or "maps out" 
pattern class territories by covering the territories with a set of influence fields 
of internal layer prototypes. 

Input layer 

Middle Layer 
(Hidden) 

Output Layer 

Figure 1: RCE Paradigm Diagram 

The first layer of prototypes pass their input to a second hidden layer. Second- 
layer prototypes are radius-limited as well. Prototypes in the output layer are 
active if any of the prototypes to which they are connected are active. Input 
pattern vectors are presented to the network. Prototypes get committed for each 
new type of vector that is processed. Similar vectors may cause existing 
prototypes' radius values to shrink. Learning is accomplished rapidly, reaching 
convergence within in a few passes through the training data (4 or 5). RCE 
performs well when there are distinct classes with very unique characteristics. 

Learning in the RCE network controls: 

• the number of internal (hidden) layer prototypes 
• the values of the connections between the internal and input layers 
• the firing thresholds of internal layer prototypes 
• the numbers of output layer prototypes 
• the pattern of connectivity between the internal and output layers 

To accomplish the above tasks, RCE is equipped with a deterministic type of 
internal prototype since its firing can cause an "identified" (or unambiguous) 
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response of the network for the corresponding pattern vector class. (It has seen 
an input vector, recognized it and matched it up with one identifying class.) 

PRCE 

PRCE is a three-layered, feed-forward, "probabilistic" neural network 
paradigm of radius-limited prototypes. 

PRCE behaves much like RCE except that the hidden internal layer contains 
clusters of probabilistic prototypes. Applying user-specified variables, the 
PRCE paradigm is better able to make decisions about pattern vectors where 
there is confusion when trying to recognize the pattern vector (when there are 
two or more possible answers). 

In the probabilistic RCE network, only probabilistic prototypes are committed 
in the internal layer of the network. Instead of one class firing, several classes 
may fire, causing some uncertainty about the response. The response class is 
determined based on the threshold which indicates the confidence requested in 
the response. This is an integer value supplied by the user. The higher this 
threshold, the higher the confidence that is required of the network prior to 
responding with a class. The lower the threshold, the less certain the network 
needs to be before responding with a class. 

Input layer 

Probabilistic 
Middle Layer 
(Hidden) 

Output Layer 

Figure 2: PRCE Paradigm Diagram 

Learning in the PRCE network controls: 

the number of internal (hidden) layer prototypes 
the values of the connections between the internal and input layers 
the firing thresholds of internal layer prototypes 
the numbers of output layer prototypes 
the pattern of connectivity between the internal and output layers 

To accomplish the above tasks, PRCE is equipped with a probabilistic type of 
internal prototype, and its task is to map out the confusion zones. A 
deterministic prototype becomes probabilistic if its influence field size shrinks 
below some user-specified threshold. When a probabilistic prototype fires, it 
fires the output prototype to which it is connected, but, weakly, in the sense that 
the output of the network is now officially "uncertain" between two or more 
possible classes. Even if only one output prototype is firing, if it is being 
stimulated only by probabilistic internal prototypes, the answer of the network 
remains uncertain. The output prototype's classification is offered as a possible, 
but not definite, classification of the input. 
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PNN 

During learning, probabilistic prototypes block the commitment of 
deterministic prototypes in any space that they occupy. If an input pattern 
vector for class B falls only within the influence fields of one or more 
probabilistic prototypes for class A, the network will not commit a deterministic 
prototype for this pattern vector. It will, however, commit a probabilistic 
prototype for class B, centered at the input pattern vector site, with influence 
field size equal to a user-supplied threshold. The network allows the influence 
fields of probabilistic prototypes for one class to cover the center point of 
probabilistic prototypes for another class. This is another way in which they 
differ importantly from deterministic prototypes. Additionally, the influence 
field size of a probabilistic prototype is never adjusted; it remains at the user- 
supplied threshold. The commitment procedure will result in a layering of the 
confusion zone with probabilistic prototypes for A and a layering with 
probabilistic prototypes for B. In this way, any input pattern vector that falls 
within the confusion zone will fire at least one probabilistic prototype for A and 
one probabilistic prototype for B. This will cause the network to respond with 
the uncertain response, "A" or "B". 

PNN is a four-layered, feed-forward, "probabilistic" neural network paradigm 
of radius-limited prototypes. 

PNN is similar to PRCE in using probabilities to try and recognize pattern 
vectors. PNN differs in that it commits a prototype for every pattern vector that 
it sees during training, then it sums the inputs from the neurons committed 
which correspond to the category from which the training pattern was selected. 
In the figure below, these "summation" neurons are generated from two-input 
neurons in the previous layer. The prototypes committed during PNN training 
stay a fixed size and do not shrink. PNN training processes the data only once, 
which makes the training of a PNN neural network very fast, but because a 
prototype is required to be committed for every input vector, the network could 
also become quite large. 

Input Layer 

Neuron Commitment 
Internal Layer 

Probabilistic 
Summation Layer 

Output Layer 

Figure 3: PNN Paradigm Diagram 

In the PNN network, only probabilistic prototypes are committed.. Instead of 
one class firing, several classes may fire, causing some uncertainty about the 
response. The response class is determined based on the threshold which 
indicates the confidence requested in the response. This is an integer value 
supplied by the user. The higher this threshold, the higher the confidence that 
is required of the network prior to responding with a class. The lower the 
threshold, the less certain the network needs to be before responding with a 
class. 
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The RCE Neural Network* 

by 

Douglas L. Reilly, Ph.D. 

Nestor, Inc. 

Introduction 

A. Background 

The RCE neural network was designed as a general-purpose, adaptive pattern classification engine. 
Following a patent application submitted in 1980, a US patent was granted for the RCE network in 
1982. [1] The first description of the network to appear in a technical journal was published in 1982, with a 
later elaboration appearing in 1987.[2,3] 

As an adaptive pattern classification engine, the RCE network can solve pattern recognition problems in 
which data classes are represented by disjoint class distributions, linearly and non-linearly separable class 
distributions, as well as non-separable classes whose class distributions overlap. In this latter case, the 
RCE network outputs local probability density information that, along with known or assumed information 
on a priori class probabilities, can be used to compute an optimal pattern classification decision. 

B. Network Description 

The RCE network consists of three layers of "neuron cells", with a full set of connections (each represented 
by a connection weight) between the first and second layers, and a partial set of connections between the 
second and third layers. (See Figure 1.) 
Each input layer cell represents a feature 
(a measurable characteristic) of an 
incoming pattern (an input signal) that 
the network assigns to some pattern Input Laver 
class (category). The input signal is 
sometimes referred to as the pattern of 
activity (or activation pattern) of the 
input layer cells. The choice of input 
features is made based upon the nature \\ I //^" Prototype Layer 
and complexity of the pattern O    O    O    O    IJ    O    O    O    0---0 
recognition problem. 

The middle-layer cells are called 
prototype cells. Each prototype cell 
contains information about an example 
of a learned pattern class that occurred 
in the training data. The connections 
between a prototype cell and the input 
layer cells store the feature values of the 
class exemplar associated with the prototype. 

Output Layer 

o 
Figure 1 

RCE Network 

Each cell on the output layer corresponds to a different pattern class represented in the training data set. 
Prototype cells are class-specific. This class affiliation is represented structurally in the network by the 

To appear in CRC Press Industrial Electronics Handbook. 



Single connection that a prototype cell makes to one and only one output cell. (See Figure 1.) However, 
more than one prototype can be associated with the same pattern class. This means that an output cell can 
be connected to more than one prototype cell. 

The knowledge about a class of patterns is stored in the network as a set of reference examples (prototypes) 
and the capability to generalize from these examples to new class instances.   The RCE network applies a 
procedural, supervised training algorithm to grow the numbers of prototype and output cells, and to define 
values for their network connections, in order to perform pattern classification. 

C. Relation to Other Neural Networks 

RCE prototype cells use an exemplar-based function to compute their responses to a pattern of activity on 
the input layer. In most cases this function computes either the Euclidean or city-block distance between 
the signal on the input layer and the vector of weights (the prototype vector) associated with the cell. 
Because of this, the RCE network is related to the class of radial basis function networks (RBF's) 
introduced in 1988.[4] 

The most commonly used training algorithm for neural networks is currently the back propagation of errors 
algorithm, first described in 1974 and, independently, in 1986.[5,6] The many variations of this algorithm 
all involve modifying network weights based upon a gradient descent approach to minimizing an error 
term. The error term is defined as a function of the difference between the desired and actual network 
responses to a pattern of activity on the network input layer. Whereas the back propagation of errors 
technique has the advantage of being able to train neural networks with arbitrary numbers of cell layers, it 
has the disadvantage of training very slowly, requiring many passes (epochs) through the training set 
before the network weights converge on a final set of values. Further, the training algorithm can 
occasionally result in the network becoming "stuck" in a condition that prevents further changes to the 
weights, without having arrived at an accurate solution to the pattern recognition problem. 

By contrast, the RCE network uses a procedural training algorithm that avoids the long training times and 
problems of false convergence that can occur with back propagation. Because it does not employ the 
gradient descent approach to minimizing an error function, RCE training offers guaranteed convergence, 
completing its training usually in 3-4 training passes through the data. Unlike back propagation with its 
ability to train any neural network regardless of structure, the RCE training algorithm can only be applied 
to networks having three layers of cells. For pattern recognition applications, this is not a serious limitation 
since researchers have shown that any pattern classification problem can be solved by a neural network 
having at most three layers.[7] Additionally, systems have been constructed with multiple component RCE 
neural network modules, each of which learns to solve portions of a pattern recognition task and which, 
together, cooperate to provide an integrated solution to the overall classification problem.[8] 

The RCE training algorithm grows the number of middle and output layer cells used by the network to 
solve the pattern recognition problem. RCE training differs from that employed in the related Probabilistic 
Neural Network (PNN), in that it allocates a new middle-layer cell only when the existing set of prototype 
cells is insufficient to correctly classify a pattern in the training set.[9] PNN allocates a middle-layer cell 
for each exemplar in the training set. 

D. Advantages of RCE Network 

The distinctive capability of the RCE network to automatically size itself during training solves a design 
issue for its users. By controlling the allocation of prototype and output layer cells, the RCE training 
algorithm eliminates the need to know in advance how many cells to specify in the middle layer of the 
network. This choice is a critical design parameter for users of networks trained with back propagation. 
Choosing a number of middle layer cells that is either too small or too large can prevent such networks 
from training to a good solution for a pattern classification problem. 



During RCE training, the middle-layer prototype cells develop expertise in classifying input signals that 
occur within their neighborhood of feature space. Information about a pattern class is represented among a 
subset of these prototype cells. Because of this, and because of the ability of the network to commit such 
cells dynamically, it is possible to incrementally train a previously trained network on new data examples 
without having to re-present the entire training set to the network. 

During the course of training on new data, the RCE network will produce incorrect network responses that 
will guide the developer in deciding which kinds of previously trained data needs to be re-presented. As an 
example, a network trained to recognize handwritten numbers will confuse 2's with examples of Greek cc's 
when examples of Greek handwritten letters are first presented. In this case, only examples of 2's need be 
re-presented to the network while it is being trained on the new class a. This dynamic category learning 
can be important for applications where in-field training is required and re-presentation of an entire initial 
training set is not possible or practical. 

The RCE network is a relatively simple network to understand, in terms of its training procedure and its 
mechanism for classification. The procedural aspect of the training function lends itself toward a 
straightforward description in terms of feature space diagrams. This, together with the relatively simple 
mathematics employed by the network, makes the RCE network intuitively easy to apply to a pattern 
recognition problem. 

There are a number of variations of the RCE network that have been implemented for pattern classification 
problems. The following description characterizes the RCE network training algorithm and output 
response modes as they are executed in a commercially available chip (the Nil000 Recognition 
Accelerator™) that implements RCE along with other radial basis function networks. 

II.       Training the RCE Network 

A. Pattern Classification-Learning Territories in Feature Space 

The clearest description of RCE network functions makes use of feature space diagrams. It is helpful to 
begin by introducing the term "feature space." 

An input signal to the RCE network 
consists of a set of feature values, 
each value represented as the 
activation of a particular input cell. 
The set of features chosen to §f: FeTre 2 

characterize an input signal for the 
network defines a feature space. 
The number of features in the set is 
referred to as the dimensionality (the    ;|: 
number of axes) of the space. 

u 
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Feature 1 

The feature values describing a 
particular input signal locate the 
signal as a point in the feature space. 
The feature space itself is the set of 
all possible feature value Figure 2 
combinations; i.e., it is the set of all      Disjoint regions for the class of patterns corresponding to the letter 
possible points in the space. To «A« in a hypothetical 2-D feature space. 
measure the closeness or similarity 
between two input signals, a 
distance may be computed between their corresponding points in the feature space. 



The correspondence between an input signal and a point in the feature space implies that a class of patterns 
is represented by a region or territory (i.e., a set of points) of the feature space. In general, the shape of the 
territory associated with a given class of patterns may be arbitrarily complex. A class of patterns may even 
consist of a collection of disconnected (disjoint) regions. (See Figure 2.) 

The solution to a pattern recognition problem requires an accurate description of the relevant class 
territories in feature space. With such a description, the class of an input signal can be identified by 
determining if the signal is contained within any of the feature space regions associated with that class. 

The challenge in solving a pattern recognition problem is to accurately characterize the shapes of class 
territories that may be arbitrarily complex. It is useful to distinguish between two kinds of problems. In 
the case of simple (or separable) class regions, each point in the feature space belongs to one and only one 
category of patterns. This means that there is no overlap between the territories of any classes, although 
their shapes may be arbitrarily complex and disjoint class regions are allowed. (See Figure 3a.) 

Pattern classes whose regions overlap are said to have non-separable (or overlapping) class territories. (See 
Figure 3b.)  Any point in their shared feature space regions is associated with more than one class. In such 
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Figure 3a Figure 3b 

In Figure 3a, pattern classes A and B are separable (A consists of two disjoint regions); in 
Figure 3b, pattern classes A and B are overlapping, sharing a region of points that could belong 

to either class A or class B. 

cases, a probability of class membership must be estimated for a given point in the overlap regions 

B. Prototype Cell Responses During Training 

When the RCE network trains on data, it learns the shapes of class territories in the feature space. These 
characterizations are developed by and stored in prototype cell parameters. An RCE prototype cell is 
characterized by five elements: its class, x, its weight vector, co, its cell threshold, I, its pattern count, K, 

and its smoothing factor, a. During training, all but the smoothing factor play a role in prototype cell 
development. 

The prototype cell weight vector, co, represents the set of weighted connections between the prototype cell 
and each of the input layer cells. Because each prototype cell has one connection with each input cell, the 
prototype weight vector has the same dimensionality as the input signal. Just as the input signal defines a 
point in the feature space, so a prototype cell weight vector defines a point in the same feature space. (See 
Figure 4.) 



In response to a signal on the input layer, each prototype cell computes a distance between the input signal 
and the prototype vector stored in its weights. When the "city-block" function is used for this distance, it is 
computed by the i* prototype cell as 

ND 

COij-Xjl (city block distance) [1] 

where    w^ is the weight connecting the i'h prototype cell to the j* input cell 

Xj is the activity of the j* input cell (i.e., the jth feature value of the 
vector x) 

ND is the number of input cells (i.e., the dimensionality of the feature 
space) 

During training, a prototype cell will become active if the prototype-to-pattern distance, d, is less than the 
cell threshold, X; if the distance d is greater than or equal to the cell threshold X, then the prototype will not 
respond to the input signal. Referring to the output of the iA prototype cell as pi; 

Pi = 1    if    dj < X-, (prototype fires) [2.a] 
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Figure 4b 

Examples of differently shaped prototype influence fields, each of size X=5, in a 
hypothetical 2-D feature space. The ta marks the location of the weight vector. Use of 

Öie city*bJock distance for the prototype-to-pattern comparison yields the diamond- 
shaped influence field of Figure 4a; use of the Euclidean distance function yields the 

circular influence field of Figure 4b. 

Pi = 0   if    dt>Xt (prototype inactive) P.b] 

The cell threshold, together with the city-block distance function, describes a "region of influence" around 
the prototype cell in the feature space. During training, a prototype cell will fire for any input signal whose 
corresponding feature space location lies within the prototype's influence field. In the two-dimensional 
feature space illustrated in Figure 4a, the city-block distance function creates an influence field that looks 



like a diamond-shaped area centered on the point defined by the prototype weight vector.'   As indicated 
earlier, it is also possible to choose a Euclidean distance function for prototypes. 

ND 

I 4-[2>s-Xj)2] 
2 l'/2 

(Euclidean distance) [3] 

In this case, the influence field of a prototype in a two-dimensional feature space looks like a circular disk 
as shown in Figure 4b. Because it is easier to draw circles than diamonds, prototypes will be pictured with 
circular influence fields in the diagrams referred to in the following discussion. 

C. The RCE Training Algorithm 

Each prototype cell represents some local information (i.e., information in the small neighborhood of the 
feature space defined by its influence field) about the nature of the pattern class with which it is associated. 
During training, the RCE network will allocate prototype cells, positioning and sizing their corresponding 
influence fields so as to cover the feature space regions for each class of patterns present in the training 
data. 

Before any training occurs, the RCE network 
can be pictured as consisting of a set of input 
cells and a set of unallocated prototype and 
output cells. By unallocated, we mean that 
they are simply not yet "wired into" the 
network.   The network is trained through a 
sequence of input signals, each presented 
with its correct classification. (A set of such 
patterns is called a labeled training set. A 
training algorithm that requires a labeled 
training set is called a supervised learning 
algorithm.) 

The training procedure makes use of three 
mechanisms: prototype cell commitment, 
prototype threshold modification and 
prototype pattern count modification. The 

Figure 5 
Hypothetical two-class recognition problem. 

process is illustrated for the pattern recognition problem shown in Figure 5, which portrays two non- 
linearly separable pattern classes, C, and C2, in a hypothetical two dimensional feature space. 

L_   Prototype Cell Commitment 

Let the first pattern presented to the network be an input signal, x, .belonging to class C,. Presentation of 
this pattern causes a new prototype cell to become committed (i.e., wired up) in the network. The 
influence field of this new prototype will be centered on the pattern x,. (See Figure 6.) In the process of 
wiring up a prototype cell, several changes are made to the network. 

First, the input signal is loaded into the prototype weight vector: 

co,   <   x, [4] 

In n dimensions, the influence field is an n-dimensional tetrahedron. 

2 In the commercial chip that implements the RCE, there are a total of 1000 unallocated prototypes and 64 
unallocated output cells available for training purposes. 



This means that the influence field of 
the newly committed prototype will be 
centered on the pattern that caused the 
cell to be committed to the network. In 
effect, the prototype cell is 
"memorizing" a class exemplar from 
the training set. 

Secondly, the prototype cell is assigned 
a cell threshold, X. This assignment 
creates an influence field around the 
prototype. The prototype will use its 
influence field to determine how much 
it can generalize to respond to novel 
patterns that are similar to the 
memorized exemplar. In the case of 
the first prototype to be committed, the 
prototype is assigned the cell threshold 
Xmix, a user-specified parameter that 
defines the largest size that any 
prototype influence field can ever have: 

RCE Network 

Figure 6 

Prototype for C, class committed as a result of exemplar x. 
Pictured at upper right is diagram of RCE Network, with newly 

committed prototype and output cell for C1( 

Xt [5] 

Prototypes committed after this prototype will have their cell thresholds set either at Xmix or at some value 
less than Xmax, based upon their position with respect to other prototypes already present in the network. 

Thirdly, a connection is made between the prototype cell and the output cell belonging to the class of the 
current input signal. This assigns a pattern class to the prototype: 

Xi<- [6] 

In this case, since no previous examples of this class (or any other) have been seen, a new output cell is 
committed to the network. Output cells are committed simply by establishing a connection to the newly 
committed prototype cell. The connection between the prototype cell and its associated output cell will 
carry a counter (the pattern counter, K) that will store the number of times this prototype has correctly fired 
in response to a pattern belonging to its associated class. For a newly committed prototype, the pattern 
counter is set to one: 

1 [7] 

When the next input signal is presented to the network, the prototype activation is computed according to 
[1] and [2]. If the input falls within the prototype's influence field, the prototype cell will fire; this, in turn, 
triggers the corresponding output cell to fire. If the input signal is an example of class C,, the network 
output will correctly classify the pattern. In effect, the network uses the prototype to generalize to 
recognize this new instance of the pattern class. 

As long as subsequent input signals belonging to this class fall within the influence field of the prototype 
representing this class, no additional prototype cells are committed and no changes occur to the influence 
field of the prototype. However, each time an input falls within the prototype's influence field and matches 
the prototype's class, the prototype's pattern counter is incremented in order to keep a count of the number 
of "correct-class" patterns that have occurred within the prototype's influence field. 



If Class (x) = Class (coj) AND p, = 1, 

then K:     <r K;+l [8] 

The first occurrence of an input signal that belongs to this class but falls outside the influence field of the 
existing class prototype causes a second prototype to be committed for the class. (See Figure 7.) The same 
commitment process occurs as described above: the input signal is loaded into the weight vector of the new 
prototype, the prototype cell 
threshold is set to A.mix and a 
connection is made between this 
new prototype and the output 
classification cell. The counter 
stored in this connection is 
initialized to 1. 

As successive examples of this class 
are presented during training, each 
prototype cell determines its 
response by computing its distance 
to the input signal according to 
equation f 1] and comparing that 
distance to the prototype cell 
threshold stored with each 
prototype. A new prototype is 
committed in the RCE network only 
when an input signal does not fall 
within the influence field of any 
existing prototype belonging to the 
input signal's class. 

RCE Network 

Figure 7 

Second prototype for C, cornm itted as a result of example 
pattern that is too dissimilar for initial prototype to classify. 

Upper right-hand picture shows additional prototype cell 
being committed and connected to output cell for class C,. 

Suppose an input signal belonging 
to a new pattern class, C2, is presented to the network. Assume it falls outside the influence fields of any of 
the existing C, prototypes. This input will cause a new prototype cell to be committed; the input signal 
values will be loaded into the new prototype weight vector and the prototype will be assigned a cell 
threshold equal to X.m„. (See Figure 8.) Because this is the first example of a new class of patterns, a new 
output cell is committed as well, representing the class C2. The counter connection between the new 
prototype cell and the C2 output cell is initialized to 1. 

As illustrated in Figure 8, the influence field of a newly committed prototype may overlap the influence 
fields of existing prototypes belonging to different pattern classes. During training, influence fields are 
only tentative hypotheses about the class membership of the feature space points they contain. As the next 
section will discuss, future training examples may cause prototype influence fields to be reduced in size. If 
the class affiliation of influence fields is still uncertain during training, what is certain is that the central 
point of a prototype influence field (as defined by the weight vector, co) must have a non-zero probability 
of belonging to the class of the prototype. (There is at least one input training pattern located at that point 
in the feature space that belonged to that class; this is the pattern that gave rise to the prototype.) Thus, the 
training algorithm allows a newly committed prototype to overlap the influence fields of other prototypes 
(in the chance that further training may yet revise their current thresholds to yield smaller influence field 



RCE Network 

sizes), but it will not allow the 
influence field of a newly 
committed prototype to be so large 
as to contain the central point of a 
prototype for an opposing class.3 

Thus, the influence field size of a 
newly committed prototype is 
chosen to be the smaller of (1) the 
distance to the closest prototype of 
any other class (i.e., different from 
the class of the prototype to be 
committed) and (2) Xmax. 

Figure B As we shall see in the next section, 
there is a value below which 

Example for new class Cz causes new prototype <xl\ (and influence fields (and cell 
output ceil for C,) to become committed in network. thresholds) are not reduced; this 

Note overlap between newly committed prototype and vaiue is xmin. The value of X.min sets 
previous prototype for C,. a lower bound on the size 0f newly 

committed influence fields. Thus, 
the full specification for influence field determination for newly committed prototypes is the following: 

Initial threshold of newly committed prototype = [9] 

the smaller of [X.max, the larger of (kmi„, the distance to the closest opposing class prototype)] 

2±.   Prototype Cell Threshold Modification 

Now suppose that a new example of the first class C, is presented to the network, and that it falls within the 
influence field of a prototype for C2. The C2 prototype incorrectly fires, causing the output cell for C2 to 
fire. (See Figure 9a.) The network's response is corrected during training by reducing the value of the 
threshold for the C2 prototype to a point where the influence field of.the C2 prototype just excludes the 
input signal. (See Figure 9b.) (Remember that the size of the prototype influence field is controlled by the 
value of the cell threshold.) 

Just as there is a user-specified parameter which determines the maximum size of a prototype threshold 
(and correspondingly, the maximum influence field size), so there is a user-specified minimum threshold, 
Xmi„, beyond which prototype thresholds are not reduced. As we shall see in the section on RCE 
Responses, prototypes that have reached this minimum size participate differently than prototypes that are 
above this threshold value in generating the network response to a pattern. 

Since prototypes cannot be reduced below this value of ^min, the value of A.min sets a lower bound on the size 
of the influence field of a newly committed prototype. The new threshold for the C2 prototype is 

i = larger of [Xmm , distance between input signal and prototype for C2 [10] 

If none of the influence fields for C, prototypes contain the input signal, then a new prototype is committed 
for C, based on the input signal. Otherwise, the reduction in the incorrect prototype cell's threshold is 
sufficient to correct the response of the network and correctly classify the input. 

A prototype that is to be committed with an influence field size of ^min (defined as the smallest value an 
influence field can have) may contain the central point of prototypes that do not belong to its class. 
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Figure 9a Figure 9b \ 

Example of class C, causes prototype for C, to fire. The training algorithm identifies the 
incorrectly active prototype (shown as the darkened cell in the network diagram at upper 

right of Figure 9a) and reduces the ceil threshold so that the influence field just excludes the 
input signal (Figure 9b.) Prototype cell with modified threshold is pictured with a smaller 

circle in the network prototype layer in the upper right-hand corner of Figure 9b. 

i_   Prototype Pattern Counts 

In addition to prototype (and possibly output) cell commitment and prototype cell threshold modification, 
the only other mechanism involved in the RCE training procedure is the incrementing of prototype pattern 
counts. The pattern count of a prototype is incremented for every pattern that falls within the prototype 
influence field and that belongs to the same class as the prototype. 

Prototype pattern counts are used by the network to approximate the local probability density values for a 
given class in a particular region of the feature space. This is important in those problems where the class 
territories are non-separable. 

In RCE training, the last training epoch is one in which no new prototypes are committed and no 
prototypes have their cell thresholds modified. (Further training with the given training data set would 
cause no changes to the network parameters.) At the beginning of every training epoch, all prototype 
pattern counts are initialized to zero. The pattern counts that develop during the last training epoch are 
those that are finally stored with the prototypes. 

As noted before, the reduction in the influence field size of a prototype can alter the subset of correct class 
training patterns that lie within its new influence field size. Obviously, the introduction of a new prototype 
during the course of a training pass can also result in a smaller pattern count for this prototype than would 
occur if the prototype existed at the beginning of the training epoch. Thus, the pattern counts that develop 
during the last training pass are the most accurate estimators of probability density values because they 
develop for a set of prototypes whose number and influence field sizes have remained unchanged during 
the training pass. 

4*.   Guaranteed Rapid Convergence of RCE Training 

Figure 10 shows that, for separable pattern class problems, this simple RCE training procedure will result 
in coverings of the pattern class regions that correctly approximate their shape, regardless of the 
complexity of the shape and regardless of the number of disjoint territories that may comprise the 
definition of a pattern class. 
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Figure 10 

Fully trained network has committed sufficient prototype ceils and 
modified their cell thresholds so that the prototypes for Ct (shown as 
soJid line circles) cover the class territory for Q, while the prototypes 

for C> (shown as dashed circles) cover the class territory for C2. 

has converged on a solution of the pattern recognition problem. This conver: 
and usually occurs in no more than 3-4 passes through the training set. 

The RCE network requires 
only a small number of 
presentations of the training 
set before it converges to a 
final solution. More than one 
training pass is required 
because a reduction in the 
size of a prototype's influence 
field during training may 
result in its failure to identify 
patterns which, when initially 
presented, fell within its 
initially larger influence field. 
In such cases, these patterns 
may give rise to additional 
prototypes. Eventually, 
however, a training pass will 
occur in which no new 
prototypes are committed and 
no prototypes have their 
influence fields reduced. At 
this point, the RCE training 
gence is guaranteed to occur, 

III.      RCE Network Responses 

The RCE network can generate responses in either of two response modes. The first mode is geared 
toward providing a rapid identification of a pattern class that is separable from all other classes in the 
training set. However, if this mode does not provide a unique class identification, a second output mode 
can be invoked to provide an estimate of pattern class probabilities for the input signal. 

A. Fast Response Mode 

In this first mode of response, the network computes prototype cell activities for each prototype cell in the 
network by computing the pattern-to-prototype distances and comparing these with the threshold values 
stored with each prototype. In this mode of response, prototype cells use a modified version of the 
activation function used during network training. 

If     (d<^    AND    h>\mm)       then   Pi=l (prototype fires)      [11] 

As the condition [10] indicates, in order for a prototype to be active, it must not only contain the input 
signal within its influence field, it must also have an influence field larger than the minimum size. 

Each output unit performs a simple OR function on the input signals arriving from the subset of prototype 
cells to which it is connected. Thus, the output cell functions as a detector to indicate if any of its 
associated prototype cells that are above minimum-influence-field size are responding to the input signal.5 

The number of training epochs required is sensitive to the ordering of class examples in the training set. 
Faster convergence occurs for a randomly ordered training set as opposed to a set in which all examples of 
one class are presented, followed by all examples of the next, etc. 
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A single responding cell on the output layer of the network indicates an unambiguous identification of the 
input signal with that pattern category. If multiple output cells are active, or if none are active, then a 
second mode of response can be invoked to determine the probabilities that the input signal belongs to the 
classes represented by output layer cells. 

B. Output Probabilities Mode 

In this mode, the response of an output cell is an approximation to p(C|x), the conditional probability of 
class C, given input signal x. To compute this response, each prototype cell uses a radially symmetric, 
decaying exponential function of the form 

Pi =  ea'>di [12] 

where o„ the prototype smoothing factor, controls the rate at which the term decays as a function of df, 
given by equation [1] as the distance between the input signal and the ith prototype. Each output cell then 
computes a weighted sum of the activations of the prototypes to which it is connected. In the case of the kth 

output cell, these are the prototypes associated with class Ck. In the activation sum, the activation of the ith 

prototype is weighted by the pattern count for that prototype, Kr Thus, the response of the output cell is 
given by 

°k =    XKiPi [13] 
pieck 

The actual conditional probability P(Cjx) is computed by dividing ok by Nf, a normalizing factor which is 
simply the sum of the activations of the output cells for all classes: 

Nc 

Nf =   5]°k> [14] 
k=I 

where Nc is the number of output cells. 

P(Q I  X)  =   ^ [15] 

C. RCE Network Responses on the Nil000 

To achieve very high operating speed targets and to satisfy the objective of a scalable pattern recognition 
architecture, certain design modifications were made to the implementation of the RCE network on the 
Nil000 Recognition Accelerator chip. 

For scalability, the NilOOO implementation of the RCE's probability response mode requires that the final 
normalization of output cell responses (i.e., the computation of [14] and [15]) be done off-chip, by the host 
processor. This enables a pattern recognition task to be distributed among a number of NilOOO processors, 
working in parallel. In such an application, each chip computes its output cell terms, ok. Host logic 
computes the Nf term, based upon the sum of all output cell activities for all chips. In the computation of 
the class-specific output term, oclass, this logic may need to combine the output terms of different output 

When operating in this network response mode, the NilOOO is designed to generate a list of classes 
represented among the "minimum-influence-field" prototypes that have been activated by the input signal 
If no prototypes of any influence field size are active, this class list will be empty. In this case host logic 
can produce a response of "Unidentified." 
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cells for different chips. (A given class can be represented by the k"1 output cell on one chip and the mth 

output cell on another.) 

To enhance operating speed, the Nil 000 implementation of the RCE network uses a particular form of a 
decaying exponential activation function for the prototype cell layer that is more naturally supported in 
silicon. By implementing an exponential decay function in base 2 as opposed to base e, the Nil000 avoids 
unnecessary and time-consuming computational overhead. Specifically, on the Nil000, the expression 
f 12] for prototype activation is replaced by the following: 

Pi =   2-aidi [16] 

IV.      Practical Guides to RCE Network Training and Use 

Like any other neural network or statistical learning algorithm, the performance of the RCE network is 
dependent upon the nature of the problem, the effectiveness of the input signal representations (i.e., the 
feature set) and the choices made for values of the network internal parameters that govern training and 
output response generation. 

A. Statistically Reliable Training Set 

For pattern recognition systems to develop a good solution to a recognition problem, the training set must 
be chosen in a way that represents the problem. Training sets that are composed from unrealistic or biased 
sampling will not have the same statistics as real world data. These statistics determine, after all, the 
location of pattern class territories, and, in the case of overlapping classes, the relative probabilities for 
different classes in such territories. To the extent that the statistics (i.e., class distributions in feature space) 
of the training set do not accurately reflect the statistics of real-world data, the network performance on the 
training set will not be predictive of its performance on "live" data. In such cases, what the network learns 
from the training set will not allow it to perform well in the real world. 

Nonetheless, in some cases, it is possible to convert the output probabilities of a network trained on one 
sample of data to those that should be produced when the network is applied to a second data sample 
whose statistics are different from that of the training set. This need arises in those problems in which 
some classes have extremely low probabilities of occurrence. In composing a training set, the more likely 
occurring pattern classes are undersampled in order to avoid creating training sets that are excessively 
large. 

Suppose the true a priori probabilities of a set of classes are represented by P(C,),..., P(CN), while their a 
priori probabilities in the training set are given by P'(C,),..., P'(CN). If, in response to an input signal x, the 
network produces a class probability P(Cjx) on the training set, the actual probability, in the context of the 
real world data, can be approximated by scaling P(Q I x) by the ratio P(Cj)/P'(Cj). This is an 
approximation, and is useful only if the sampling of the training set has been random within each class of 
patterns. 

B. Choice of Representation Features 

The shape of the pattern class territory is very dependent on the selection of features chosen to characterize 
the input patterns. Omitting features from the representation that are critical in distinguishing one class of 
patterns from another will result in separable classes appearing as non-separable, overlapping territories. 
At the same time, the inclusion of features that have no relevance to a pattern recognition problem can 
result in class territories occupying larger volumes in the pattern space than they would otherwise, resulting 
in RCE networks with large numbers of prototype cells. 

Even relevant features, if too "low-level," will result in a need for large numbers of training patterns 
because the class territories that arise may consist of a large number of disjoint regions scattered 
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throughout the pattern space. The RCE network is sensitive to the effects of too low-level a representation 
because its training does not generate new feature representations that can be used to re-engineer the 
feature space, rearranging pattern class territories. Within the feature space defined by the input signals, 
the RCE works to accomplish the best separation of input pattern classes and estimates of their class 
probabilities. A complex feature space class distribution that consists of numerous, unrelated, disjoint 
territories will result in a large number of prototype cells being committed by the RCE network. 

In nearly all cases, an understanding of the problem domain creates the opportunity to engineer higher- 
level representations for presentation to the network. As an example, the best representations for a 
character recognition task are not pixel-based, but employ, instead, higher-level groupings of pixels that 
reflect some structures in the image (e.g., straight lines of different orientations, corners, intersections, 
etc.). Use of such higher-level representations can yield substantial benefits in terms of fewer prototypes 
committed, higher accuracies and better performance of the network in generalizing to correctly classify 
novel examples outside of the training set. 

C. Choice of Values for RCE Network Parameters 

The RCE parameters that most affect performance on a given problem are Xmax, A.min and a, the prototype 
smoothing factor.   In no case can choices be made for any of these values which would result in the RCE 
training failing to converge. The convergence guarantee is independent of the values chosen for Xmax and 
Km-   However, choices for these parameters can affect the numbers of prototypes committed during 
training and, to a lesser extent, recognition accuracy. 

Smaller values for Xma will result in the commitment of more prototypes, simply because the network will 
require more prototypes to cover pattern class territories. More specifically, if the size of Xmax is small 
relative to the average size of the class territories in the feature space, more prototypes will be required to 
solve the pattern recognition problem. 

On the other hand, the effect of choosing larger values of Xm3x will be a tendency by the system to 
generalize more aggressively when presented with novel input patterns. This effect will be most noticeable 
if the initial training set does not fully capture the statistics of the data that the network will process in the 
future. This effect will be particularly observable if the network is trained incrementally in the field 
through dynamic category addition, where, as often happens with in-field training, wholly new pattern 
classes are introduced at later times. 

Similarly, choices for Xmin can have very noticeable effects on network performance. The larger the value 
for ^min. relative to the average size of pattern class territories, the more likely that a separable pattern class 
problem will be treated as if it is non-separable. The smaller the value for Xmiri, the more likely the network 
will commit a large number of prototypes for problems in which there are overlapping class territories that 
are large compared to the value chosen for Xraj„. This is easy to see in the extreme case of choosing Xmin so 
small that only "point-value" influence fields are allowed. (The influence field is large enough to only" 
contain the prototype weight vector.) In this case, training will cause a prototype to be committed for 
every distinct example of a pattern class contained in the overlap region. 

Finally, although the value chosen for o does not in any way affect the training of the RCE network (the 
training procedure is independent of a), it can affect the probability responses generated by the network. 
As an example, choosing a value of a, =0 for all prototypes (surely an extreme choice) would make the 
class probability estimate generated by the network independent of the actual value of the input signal. All 

The value of a, the smoothing factor, is not used during RCE training. 

7 The values for Xmax and Xmin must be properly chosen; i.e., Xmax > Xmi„ > 0. 
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prototypes would have activations of value 1, and the output cell responses (computed as normalized 
probabilities) would simply be equal to the a priori probabilities of each class, as computed from the 
training data set. 

In general, the further the input signal is from the prototype, the less that prototype should contribute to the 
estimate of the probability of the input signal's belonging to the given prototype's pattern class. As an 
example, choosing o{ = 1/A.j ensures that the contribution of the i"1 prototype to an output cell's 
(unnormalized) probability response falls to a value of 1/e of its contribution for input signals at the edge of 
its influence field as compared to those signals that fall at its field center. 

V.        Applications of RCE to Pattern Recognition 

As in other neural network systems for pattern recognition, the mechanics of RCE network training and 
classification are completely independent of the meaning of the input signals presented to the network. 
This makes the network applicable to a broad range of pattern recognition tasks. The network has been 
applied to a wide variety of pattern recognition problems, including character recognition, image 
recognition, and a range of decision-making tasks in the area of financial services. The following 
discussion highlights the approach to feature generation and network training taken in several of these 
applications. 

A. Character Recognition 

The network has been applied to the problem of recognizing unconstrained handwritten characters, 
described either by image-based information, as might be available from scanning devices, or by stroke- 
based information, as might be available from devices that capture handwriting information online. 
Different features are defined for these two different contexts. 

In the case of image based character recognition, one set of possible feature values corresponds to the 
registration of feature templates positioned at different locations over an image box containing the pattern 
to be recognized. [10] As an example, if the pattern is represented by a grid, 256 x 256 pixels in dimension, 
templates can be defined that are 16 x 16 pixels, for line segments oriented at 0°, 30°, 45°, 60° and 90°. 
Additional templates can be defined for different corner combinations and intersection styles (T's, +'s, and 
X's). A given template is moved across the image to different sampled locations, and at each location, a 
function is computed which measures how well the template matches the pixel values in that area of the 
image. This produces a feature that measures the degree to which the given template is present at the 
particular image location. The set of all such feature values for each template at every sampled image 
location produces an input signal for the RCE network to use in classifying the image. 

In the case of online character recognition, features can be defined that are based upon the sequence of 
points that occur as the pattern is being drawn. A stroke sequence of points can then be characterized by 
the magnitude of successive motions in the x and y directions, along with information on the rate of 
curvature change at various positions along the stroke. Such a representation will mean that very different 
feature input signals will be generated if a pattern is drawn using one sequence of strokes versus another. 
The RCE network will accommodate this by creating additional prototypes to learn these stroke variations. 

B. Image Analysis Applications 

One example of the application of the RCE network to an image analysis problem is vehicle detection on 
roadways. [11] Accurate, automatic vehicle detection systems can be used for a variety of traffic 
engineering applications, including queue length measurement and traffic disruption detection. A detection 
system must process a gray-scale image of a roadway view in order to determine the number of vehicles 
present in the scene. 

The input features chosen for the problem convert the high-resolution gray-scale image provided by the 
video camera into a coarser representation for the neural network. An ax b pixel tile is defined whose 
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value is computed from the average of the pixel gray-scale values it contains. Converting the image from 
an m x n array of gray-scale pixels to an p x q array of tiles reduces the dimensionality of the data. (Tiles 
do not overlap.) The coarser representation of the image is still a low-level representation; it makes use of 
no features corresponding to structural primitives. Although this representation does not carry enough 
information to enable the network to solve the problem of vehicle identification (e.g., deciding the 
particular make of automobile in the scene), it preserves enough information for the comparatively less 
demanding task of vehicle detection. This image analysis application illustrates the point that the 
complexity of the pattern recognition problem influences the level of complexity required in the input 
feature set. 

In a similar spirit, the Nil 000 has been applied to the problem of classifying a fingerprint image in terms of 
component orientation maps. [12] The maps, also known as ridge direction maps, are used in many 
fingerprint identification systems. The RCE network is trained to store in each of its prototype cells, a 
weight vector that corresponds to pre-generated templates for specific ridge directions. A fixed window is 
moved along the fingerprint image. To the center pixel of each window location, the network assigns the 
closest matching ridge classification. These local image classifications can then be provided as input to a 
second classification process to identify the fingerprint image. 

C. Decision Making in Financial Services 

Outside the realm of image data or general signal processing tasks, the RCE network has also been applied 
to pattern recognition problems that are at the heart of risk assessment problems in financial services. In 
particular, RCE networks have been trained to provide accept/decline decisions as made by underwriters on 
residential mortgage applications.[13] In this case, the features used to create input signals for the network 
are computed from information available on the loan application. Such applications contain information 
on the borrower (e.g., length of employment, salary, etc.), the borrower's credit history (number of trade 
lines open, number of foreclosures, number of times 30 days late, 60 days late, etc.) and various ratios that 
underwriters consider in making their decision (loan to value ratio, etc.). By training on samples of 
accepted and declined mortgages, the network can learn to emulate the quality of decision-making 
capabilities of the mortgage underwriters as reflected in the training data set. 

Another application in the financial services area involves the use of the network to detect fraudulent 
activity in credit card usage.[14,15] Here the network is used to assign to each credit card transaction a 
score that reflects the likelihood of the transaction's being fraudulent. The input features that characterize 
a transaction are defined from characteristics of the transaction itself (amount of the transaction, location of 
the transaction, type of goods or service being purchased), the characteristics of recent purchase activity on 
the card (number of transactions made in the past several days, weeks and months, average dollar value of 
purchases in the past several days, weeks or months, etc.) as well as general information available about the 
cardholder's account (amount of available credit, how long the account has been open, elapsed time since a 
new credit card was mailed to the customer, etc.) All of these features, taken together, provide a picture of 
the current transaction in the context of the normal use of the card. By presenting the network with 
examples of both good and fraudulent transactions, each characterized by these features, the network is 
able to learn to identify a significant portion of fraudulent activity. 

The above examples illustrate the broad applicability of the RCE network to pattern recognition problems. 
The principal requirements for applying the network to such problems are (1) access to a reliably labeled 
training data set of sufficient examples and (2) a means of characterizing data examples in terms of features 
that are relevant and appropriate for the problem domain. 
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VI.      RCE Network on a Commercially Available Neural Network Chip 

As is the case with other 
neural networks, there is a 
high degree of parallelism 
in the computations that the 
RCE network performs for 
both training and pattern 
classification. Recently, a 
special purpose neural 
network chip, the Nil000 
Recognition Accelerator, 
has been designed and 
developed to implement in 
truly parallel fashion many 
of the operations performed 
by the RCE network and 
other networks of similar 
structure.   Significantly, 
the Nil000 has been 
designed so as to perform 
not only RCE recognition 
but also RCE training 
operations with on-chip 
logic. [16] This makes it 
ideally suited for 
applications that require 
rapid, real-time, in-field 
trainability. 

Microcontroller 

Figure 11 
Block diagram of Ni 1000 Recogn ition Accelerator Chip 

The Nil000 Recognition 
Accelerator supports classification of over 32,000 patterns per second, with real-time adaptation. The chip 
is compatible with commonly used radial basis function paradigms, including RCE and PNN networks. 
The Nil000 is designed to accept input vectors with a maximum of 256 features, each with 32 levels of 
resolution, and produces up to 64 classes and/or probabilities. High-speed parallel processing units 
compute the city-block distance between an input vector and up to 1000 stored prototypes. A block 
diagram of the Nil 000 Recognition Accelerator appears in Figure 11. The on-chip, custom, 16-bit 
microcontroller has separate program and data memories. The 4K x 16-bit non-volatile FLASH EPROM 
memory can hold training algorithms, chip maintenance utilities and other software required by the 
application. A general purpose 256 x 16-bit RAM is also available to the microcontroller. 

The microcontroller can enable an automatic classification mode in which a series of logic blocks, arranged 
as a pipeline, process data and output results to a host. The classification pipeline consists of input buffers, 
distance calculation units, a large FLASH prototype array that stores the results from the training process, a 
mathematical unit and its output memories, and an output buffer. At 33 MHz, the pipeline can classify 
over 32,000 input vectors per second, in which each input vector has up to 256 features with 5-bit 
resolution for each feature. The performance is made possible by the Nil000 parallel architecture, which 
executes up to 16.5 billion operations per second. A typical Von Neumann machine would need to execute 
more than 65 billion instructions per second to approach the processing rate achieved by the Nil000 
Recognition Accelerator. 

The PNN network, as well as other radial basis function networks can also be implemented by the chip. 
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The Nil000 makes it practical to apply the RCE network to numerous pattern classification tasks that have 
extremely high throughput requirements, or that require real-time or near real-time performance. 
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1. About This Book 

This book describes the software implementation of Radial Basis Function neural networks using the 
NilOOO Recognition Accelerator on either the ISA1000 or the PCI4000 board. 

Before reading this book, you should have read and understood: 
• Radial Basis Function Neural Networks, in the binder labeled NilOOO Development System For 

Windows, and 
• The RCE Neural Network, the document which immediately precedes this on in this binder. 

1.1 Structure Of This Book 

Chapter 2 gives an overview of the NilOOO Recognition Accelerator. 

Chapter 3 gives an abstract of information found in the NilOOO User's Guide, focusing exclusively on the 
software interface presented. 

Chapter 4 describes the interface between the software and the NilOOO standard microcode. All 
commands issued by software eventually get carried out by the microprogram. The connection between 
these commands and the functions detailed in the NilOOO Libraries document is described as well. 

Chapter 5 illustrates common calling sequences used to accomplish various neural network functions on a 
single NilOO 

Chapter 6 extends the concepts in chapter 5 to the multiple chip case. 

Chapter 7 discusses some methods of post-training manipulation of network parameters which can be 
useful in performance tuning. 

1.2 Use Of Typography In This Book 

• Arial font is used to highlight references to software functions and for example pieces of 
software. 

• Italics are used when new technical terms are introduced. 

1.3 Location Of Samples Code 

This book contains lots of sample code. In addition to these samples, working samples are provided in 
electronic format, and can be found in the \<install_path_root>\samples directory. 

11/07/95 



Implementing Neural Networks Using The NilOOO 

2. NilOOO Recognition Accelerator Overview 

—I 

Bus 
Interface 

Internal Bus 
Classifier 

32/64 
4. 

Microcontroller 

J 

Nil 000-001 

Figure 2-1. Block Diagram 

The NilOOO Accelerator supports classification of over 10,000 patterns per second, with real-time 
adaptation. The chip is compatible with commonly used Radial Basis Function (RBF) paradigms, 
including Restricted Coulomb Energy (RCE), Probabilistic RCE (PRCE), Probabilistic Neural Networks 
(PNN) and other algorithms. The flexible, on-chip microcontroller, with its 4K x 16-bit non-volatile 
microcode memory, also permits implementation of other custom algorithms. 

The Accelerator accepts input vectors with a maximum of 222 features, each with 32 levels of resolution, 
and produces up to 64 class IDs and probabilities. High-speed parallel processing units compute the city- 
block distance between an input vector and up to 1000 stored prototypical examples. The Accelerator's 
high speed is suitable for computationally intensive applications like optical character recognition, 
fingerprint identification and industrial inspection. 

Pattern recognition is the process of sorting input data into categories or classes that are significant to the 
user. Prototypical sets of values of differentiating traits (features) for each class must first be loaded into 
the chip's memory. The contents of the chip's memory can be developed manually or extracted from 
examples of data typical to the problem, using a learning algorithm. Feature sets are problem-specific and 
may consist partially or completely of stored data, such as historical records, or of direct sensor inputs. 
Once learning is complete, the system is ready to classify input data. The NilOOO Recognition Accelerator 
supports incremental learning in the field, which may be necessary to further adapt the recognition system 
to its environment. 

The Accelerator consists of two main parts: a classifier and a general-purpose 16-bit microcontroller. The 
classifier performs distance calculations between the input vector and a set of up to 1000 stored prototypes 
, using an array of 500 dedicated processors. Its outputs are firing class IDs and probability densities, with 
the latter calculated in six phases handled by a six-stage pipelined processor. The microcontroller 
implements on-chip learning algorithms and interacts with software running on the host. 

Both the input and output stages of the classifier are equipped with alternating double buffers, so that the 
classifier does not stall during I/O. The host interface can be selected for 32- or 64-bit data bus width, and 
it supports a single-transfer-per-clock burst mode. 
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Figure 2-2 is a block diagram of the internal hardware architecture. The upper part of Figure 2-2 shows 
the classifier, the bottom part shows the microcontroller, and the middle part shows the interface to the 
host. 

In an application environment, the classifier receives data from the host system through the bus interface, 
processes it, and sends the classification results back through the bus interface to the host. The classifier 
exploits both array and pipeline parallelism to perform over 10,000 classifications per second. The 
parallel hardware of the Distance Calculation Units and their tight coupling to the Prototype Array (PA) 
are responsible for much of this processing power. The Prototype Array holds 1024 (raw prototypes) x 
256 (features) x 5 (bits per feature), for a total of 1.3 million non-volatile Flash storage bits. Note that the 
1024x256 physical array provides 1000x222 storage locations usable for classification. Additional 
prototype storage is possible using multiple NilOOO Accelerators and a higher effective input feature 
resolution is possible using two or more NilOOO features to represent each feature. 

Prototype 
Amy 
(PA) 

I 
Prototype 

Parameter RAM 
(PPRAM) 

zzi— 
512 Distance 
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Intern il 
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Figure 2-2. Internal Architecture 

Each of the 512 parallel Distance Calculation Units calculates the city-block distance by summing the 
differences produced by their absolute value subtracters. The subtraction is performed on each feature of 
the input vector and the corresponding feature of one of the prototype vectors stored in the Prototype 
Array. The DCUs are multiplexed twice in time to achieve a sustainable processing rate of over 12 billion 
operations per second and a bandwidth of over 30 Gbps. 

The classifier's Math Unit (MU) calculates probability densities and results classes concurrently. The MU 
uses a sixstage pipeline with a resolution of 16-bits for floating-point computations (10-bit mantissa and 
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6-bit exponent). It places results into one of two static RAMs. This double-buffering scheme allows the 
Math Unit to continue processing a second vector without interrupting the classification pipeline. The 
Prototype Parameter RAMs (PPRAMs) hold parameters like the radius (r), smoothing factor (k), and 
Count (Q. 

The bottom part of Figure 2-2 shows the microcontroller. It is a fully custom, 16-bit, Harvard-architecture 
microcontroller that supervises learning, performs chip maintenance tasks, and maintains communication 
with the host. It can also exchange interrupts with the host. The 4k xl 6-bit PGFLASH Flash memory 
stores the microcontroller programs. All memory devices are memory-mapped to the microcontroller's 
address space, with the exception of the microcontroller's program memory (PGFLASH). Other facilities 
available to the microcontroller include 256 words of general-purpose static RAM (GRAM) and a free- 
running 32-bit timer. Classification must stop while the microcontroller accesses these memories. 

The microcontroller can enable an automatic classification mode in which a series of logic blocks, 
arranged as a pipeline, process data and output the results to the host. The classification pipeline consists 
of input buffers, distance calculation units, a large FLASH prototype array that stores the results from the 
learning process, a mathematical unit and its output memories, and output buffer. At 25MHz, the pipeline 
can classify over 10,000 input vectors per second, in which each input vector has up to 222 5-bit features. 
The performance is made possible by the NilOOO parallel architecture, which can execute over 12 billion 
operations per second. A typical Von Neumann machine would need to execute more than 40 billion 
instructions per second to approach the processing rate achieved by the NilOOO Recognition Accelerator. 

The middle part of Figure 2-2 shows the interface to the host, which consists of input buffers (IRAM), an 
output buffer (ORAM), and sixteen I/O control registers. The external data bus can be either 32 or 64 bits 
wide and will perform single-clock burst transfers. The input stage buffers two full-sized vectors. The 
outputs can be either in IEEE standard 32-bit floating-point format or the internal 16-bit floating-point 
format. Both the host and the Accelerator's on-chip microcontroller can access the sixteen 16-bit I/O 
control registers. The registers contain various control parameters for the Accelerator and provide a 
general channel for communication between the microcontroller and the host. 
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3. Nil 000 External Interface Details 

The NilOOO operates in two basic modes, training and classification. During training, feature vectors are 
taken into the chip and a neural network is created. The training is accomplished under the supervision of 
the Nil000's internal microprogram. During training, some of the feature vectors are saved as prototypes, 
and various network parameters are adjusted for later use during classification. During classification, 
feature vectors are taken into the chip, compared against the saved prototypes, and probabilistic and/or 
deterministic classification results are produced. The NilOOO microprogram is not involved in 
classification. 

The Nil000's interfaces to the outside world to accomplish all of these functions are the IRAM, which 
accepts feature vectors as input, the ORAM, where the probabilistic and/or deterministic results are 
deposited as output, and the set of 16 I/O registers, which provide a way to pass information back and 
forth between software and the Nil000's microprogram. A short, somewhat more detailed explanation of 
these pieces will help you better understand the use of the parameters in the various NilOOO Libraries. 

3.1 IRAM 

The IRAM accepts up to 256 5-bit features, 4 features at a time on the 32-bit bus. The 5-bit features must 
appear in the 5 most significant bits of each byte. This is illustrated in Figure 3-1. 

(MSB) dddddxxx dddddxxx dddddxxx ddddxxx  (LSB) 

d =valid data bit 
x=invalid bit 

Figure 3-1. Data Alignment on 32-Bit External Bus 

3.1.1 Vector Restrictions 

The following restrictions are placed on feature vectors to insure reliable and accurate operation. These 
restrictions, taken as a set, reduce the usable number of features from 256 to 222. 

3.1.1.1  Vector Padding 

The chip does not calculate results reliably unless certain features are always 0. The NilOOO library 
functions pad each input vector appropriately, using up 32 of the available 256 features. 

3.1.1.2 Two Features Unusable 

The last two features may not be used. No padded feature vector may be longer than 254 features. 
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3.2 ORAM 

ORAM holds the results of a classification until read out of the NilOOO. For each vector, the chip 
calculates both probabilistic and deterministic results for up to 64 classes. The user has the option of 
reading one or the other or both. 

3.2.1 Probabilistic Results 

Probabilistic classification produces the probability density for each class. Section 5.1.5 of the NilOOO 
User's Guide describes the possible formats of the output data. Although the NilOOO provides two format 
options, the functions in the NilOOO libraries always return probabilistic results in 32-bit IEEE standard 
floating point format. There will always be one result for each possible class for each vector, even if the 
probability density is 0. The number of results is (n+1), where n is the highest class number in use (See 
DIM, below) 

3.2.2 Deterministic Results 

Deterministic classification produces a class firing list. Unlike the probabilistic results, the number of 
results produced depends on the number of classes that fire, not the number of classes in the problem. 
The deterministic data result format is shown in Figure 3-2. A list entry is 1 byte long, and 4 of them may 
be read at a time. 

(MSB)    vcnrauuin vcnnnnnn vcnniuuin vcniuuinn   (LSB) 

n=firing class # 

c=confidence bit (not meaningful on current rev of silicon) 

v=vaKd byte (valid if HIGH, invalid if LOW) 

Nil 000-061 

Figure 3-2. Format of Deterministic Results 

3.2.2.1  Confidence Indicator Implementation 

As shown in Figure 3-2, each entry in the class list has a confidence indicator. The intent of this bit is to 
indicate when the prototype(s) in the neural memory which caused the corresponding class number to fire 
is/are not valid for deterministic classification, which classifies a vector by answering the question, "Does 
this input feature vector fall inside a prototype's radius?" This can occur when, during training, the 
NilOOO microcode wants to shrink the radius of a prototype but is prevented from doing so by the 
minimum radius parameter. As a result, the region within this prototype's radius does include a known 
conflict. When this occurs, the confidence indicator (or probabilistic bit) is set to indicate that 
probabilistic classification should be used to resolve such possible conflicts. A prototype with the 
probabilistic bit set is called a, probabilistic prototype. 

The probabilistic bits are collected from the on-chip network in the order that prototypes are processed 
Thus, for the bits to be valid in the ORAM, it is necessary to ensure that all deterministic prototypes are 
processed before any probabilistic prototypes for a given class. This requires external software 
intervention after on-chip training has been completed. Complete details are available from Nestor. 
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3.2.3 Other Results 

The contents of a PA column can be accessed and read out of the chip through the ORAM. The features 
are returned one feature per byte, with the 5-bit feature in the 5 most significant bits of each byte. This is 
identical to the IRAM load format shown in Figure 3-1. 

3.3 I/O REGISTERS 

A set of 16 I/O registers are available for sending commands, passing parameters, and reading status. 
Table 3-1 shows the full register set. Each register is 16 bits wide. The interesting subset (from an 
applications point of view) of these registers is discussed below. 

Address 
(Hex) 

Name Description 

0000 CMR Chip Mode Register. 

0008 DIM Vector Dimension Register. 

0010 IDR Chip ID Register. 

0018 SSR Software Status Register. 

0020 HS1 Hardware Status Register 1. 

0028 HS2 Hardware Status Register 2. 

0030 xm. External Interrupt Register. 

0038 IIR Internal Interrupt Register. 

0040 CRA Control Register A. 

0048 CRB Control Register B. 

0050 OP0 General-purpose operand register 0. 

0058 OP1 General-purpose operand register 1. 

0060 OP2 General-purpose operand register 2. 

0068 OP3 General-purpose operand register 3. 

0070 OP4 General-purpose operand register 4. 

0078 OP5 General-purpose operand register 5. 

Table 3-1. I/O Register Map 

15 11/07/95 



Implementing Neural Networks Using The Nil000 

3.3.1 CMR 

The Chip Mode Register (CMR) format is shown in Figure 3-3. At power up and/or chip reset, bit 15 is 
set to 1 automatically. This prevents execution of the NilOOO's microprogram. A 0 must be written to this 
register as part of the initialization sequence to allow the microprogram to execute. After initialization, 
this register is used to send commands to the microprogram. 

Register CMR 

Address (hex): 0000 

Bit Assignment: 

15 14 

Command Opcode 

Chip Reset Bit 

Figure 3-3. The CMR Register 

3.3.2 DIM 

The DIMension register tells the Nil000 how many features (or dimensions) are to be expected during 
certain operations, and is shown in Figure 3-4. 

Register 

Address (hex): 

Bit Assignment: 

15 

DIM 

0008 

Desired # of Classes - 1 Input Vector Dimension -1 

Figure 3-4. The DIM Register 

Bits[7:0] indicate the number of features in the input vector minus 1. THIS SHOULD BE THE PADDED 
IT DOES NOT INCLUDE EXTRA 0's PROVIDED TO FILL OUT 32-BIT WORDS. The IRAM 
recognizes the end of one vector and the beginning of another by counting the number of features written 
until the total equals this number. 

Bits[13:8] generally indicate the highest class number minus 1 on the chip after training, which can be 
read to determine how much space must be allowed for classification results. These bits are occasionally 
used in other ways, and these will be discussed when the situation arises. 
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3.3.3 IDR 

The ID Register (IDR) contains a constant which is used to uniquely identify the version of the NilOOO 
chip, as shown in Figure 3-5. This document describes NilOOOs with ID 315B (hex). 

Register IDR 

Address (hex): 0010 

Bit Assignment 

15 0 

315Bh 

NilOOO-045 

Figure 3-5. The IDR Register 

3.3.4 SSR 

The Software Status Register (SSR) is a 16-bit general purpose register. None of the bits has a predefined 
function in the NilOOO hardware, but certain bits have been defined for use with the NilOOO Standard 
Microcode. That discussion will be deferred until Chapter 4. 

3.3.5 XER 

The external Interrupt Register (XIR) is a 16-bit general purpose register. None of the bits has a 
predefined function in the NilOOO hardware, but certain bits have been defined for use with the NilOOO 
Standard Microcode. That discussion will be deferred until Chapter 4. 

3.3.6 OP0-OP5 

The 6 OPerand registers (OP#) are 16-bit general purpose registers. None of the registers has a predefined 
function in the NilOOO hardware, but certain registers have been defined for use with the NilOOO Standard 
Microcode. That discussion will be deferred until Chapter 4. 
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4. NM000 Standard Microcode 

Each NilOOO is shipped with the NilOOO Standard Microcode already loaded in the non-volatile control 
store. This microprogram handles on-chip maintenance, supervises training, etc. An application 
communicates with the microcode by sending it commands. The protocol for issuing a command and 
retrieving the results is handled entirely by the NilOOO library routines, so this section will focus on the 
application's view of the commands implemented by this microcode. Each of the key commands (again, 
from the application programmer's viewpoint) are given in Table 4-1, and described briefly in section 4.2. 

Command Function 
Read configuration information 
Setup for classification 
Tell microprogram the clock frequency 
Read the contents of a PA column 
Write a PA column with specified data 
Read the network parameters of a prototype 
Write the network parameters of a prototype 
Read a location in the NilOOO memory map 
Write a location in the NilOOO memory map 
Setup for training 
Present a training vector 
Indicate the end of one pass through the training data 
Indicate the end of training 

Microcode Commands 

Opcode NilOOO Command Name 
00 READCONFIG 
01 CLASSMODE 
02 SETCLOCK 
04 COLUMNREAD 
05 COLUMNWRITE 
08 PPRAMREAD 
09 PPRAMWRrrE 
OA RAMREAD 
OB RAMWRrrE 
OC LEARNBEGIN 
OD LEARNVECTOR 
OE LEARNEPOCH 
OF LEARNEND 

Table 4-1 . "Key" NilOOO Standard 

DISCLAIMER: The entire contents of this chapter are specific to the NilOOO Standard Microcode. If you 
customize the microcode, this information will no longer be accurate. Information and training on 
creating customized microcode is available from Nestor. 

4.1 Microcode Communication Protocol 

The NilOOO command is sent to the microprogram by writing the opcode into the CMR register. Any 
operands are written into the OP# registers, or, if a feature vector is required, into IRAM, prior to writing 
the command into CMR. Data may be returned in the OP# registers as well, or, in some cases, in ORAM. 
On completion of a command, the microprogram writes the XIR register with status as shown in Figure 4- 
1. A completed command echoes the opcode in XIR. In general, applications programmers will not 
receive error codes directly from the microprogram. Any such errors are handled by the NilOOO library. 
Details on the error codes, if they are encountered, are found in the NilOOO User's Guide, section 7.4.1. 
More information, if required, can be obtained from Nestor. 

15 14 8 7            6 5 0 

0 Error Code Reserved Command Opcode 

Figure 4-1. XIR Format On Command Completion 
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4.2 NHOOO Standard Microcode Commands 

4.2.1  READCONFIG 

CMR:    00 
Inputs:   none 
Outputs: XIR = 0 or error code 

DLM[13:8] = (# returned bytes/2) -1 
ORAM = configuration data 

This command reads current configuration data out of the chip. A total of 36 bytes are currently defined, 
but the actual number of bytes is returned in DIM to allow for future expansion. The information returned 
is given in Table 4-2. 

Word # Information Returned 
0 Microcode ED 
1 Microcode Revision Number 
2 Currently undefined 
3 Currently undefined 
4 Paradigm used to train network (0=no network, 1=RCE/PRCE, 2=PNN) 
5 Highest class number in the network 
6 Number of prototypes in the network 
7 Number of features in the network (padded number) 
8 Maximum radius used during training of the network 
9 Minimum radius used during training of the network 

10 Sector number of the network (currently always 0) 
11 Smoothing factor exponent offset 

12-17 Currently undefined 
Table 4-2. READCONFIG Returned Information 

4.2.2 CLASSMODE 

CMR:    01 
Inputs:  DIM[7:0] = Number of features (padded) in feature vectors 

OP0 = l 
Outputs: XIR = 1 or error code 

DIM[13:8] = highest class number -1 

This command must be issued before starting a series of classifications. It places the NilOOO into 
classification mode, which takes control from the microprogram and passes it to an on-chip hardware 
controller to maximize performance. The microcode has no function during actual classifications. 

The CLASSMODE command is issued by the ClassifyBegin function. 

20 11/07/95 



Implementing Neural Networks Using The Nil000 

4.2.3 SETCLOCK 

CMR:    02 
Inputs:   OP0 = Clock period in nanoseconds 
Outputs: XIR = 2 or error code 

The Nil000 microprogram programs the non-volatile neural network memory during training. The 
technology requires programming pulses of a certain duration to work properly, and this command 
informs the microprogram of the external clock frequency so that it can time these pulses correctly. The 
command should be issued once during chip initialization. 

The SETCLOCK command is issued by the InitializeChip function. 

4.2.4 COLUMNREAD 

CMR:    04 
Inputs:  OP0 = column # 

OP1 = first row # 
DIM[13:8] = (# of rows to read-1) / 2 
OP2 = 0 

Outputs: XIR = 4 or error code 
ORAM = PA column data 

This command reads the specified number of features from an arbitrary location (column, first row) into 
the ORAM. This command is useful for saving a trained memory to a file. The terms column and row 
refer to a physical location in the Prototype Array (PA). Column number and prototype number may 
differ at times. 

The COLUMNREAD command is issued by the ReadColumn function. 

4.2.5 COLUMNWRITE 

CMR:    05 
Inputs:   OP0 = column # 

OP1 = first row # 
DIM[7:0] = number of features to write -1 
OP2 = 0 
IRAM = input vector 

Outputs: XTR = 5 or error code 

This command writes the specified number of features starting at an arbitrary location (column, first row). 
The data to be written is placed in IRAM. This command is useful for restoring a memory from a file. 

The COLUMNWRrTE command is issued by the WriteColumn function. 
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4.2.6 PPRAMREAD 

CMR:    08 
Inputs:  OP0 = column* 
Outputs: XIR = 8 or error code 

OP0 = PPRAM1 data 
OP1 = PPRAM2 data 
OP2 = PPRAM3 data 

This command reads the neural network parameters that were computed during training for the specified 
column. The parameters are broken up into three 16-bit words and stored in three simultaneously accessed 
banks of RAM. The format of the PPRAM words is shown in Figure 4-2. This command is useful for 
extracting information when saving a trained memory to a file. 

PPRAM 3 

Count 

14        13 
PPRAM 2 

Lambda (RBF radius) 

K (smoothing factor) U P Class ID 

Figure 4-2. PPRAM Format 

The fields of the PPRAM words are: 
• Count - The number of training vectors that fell within this prototype's radius during the last epoch of 

training; used as a factor during classification when calculation probability density 
• Disable Flag (D) - Set to disable this prototype 
• Radius - The final radius produced by RCE/PRCE training 
• Smoothing Factor - The decay constant which governs how quickly probability density decreases as 

the distance from the prototype increases; Used during probabilistic classification 
• "Used" Flag - Set when there is a valid prototype 
• Probabilistic Flag (P) - Set to indicate that the RCE/PRCE training algorithm wanted to shrink the 

radius further, but was prevented from doing so by the minimum radius training parameter; Used 
during classification to indicate that the prototype should only be used for probabilistic classification 

• Class - The class designation for the prototype 

The PPRAMREAD command is issued by the ReadProtoParamsEntry function. 
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4.2.7 PPRAMWRITE 

CMR:    09 
Inputs:   OPO = PPRAM1 data 

OP1 = PPRAM2 data 
OP2 = PPRAM3 data 
OP3 = column # 

Outputs: XIR = 9 or error code 

This command writes the specified data into the neural network parameters for the specified column. 
Refer to Figure 4-2 for the PPRAM format. This command is useful for restoring a memory from a file. 

The PPRAMWRTTE command is issued by the WriteProtoParamsEntry function. 

4.2.8 RAMREAD 

CMR:    0A 
Inputs:   OPO = address 
Outputs: XIR = 0A or error code 

OP5 = data 

This command provides a way to read the value of a specific location in the NilOOO memory map. While 
most of the mapped memory is accessible, the application programmer will want to confine himself to 
certain locations in the microprogram's scratch RAM (GRAM), which runs from location 1000 (hex) to 
location lfff (hex). The entire memory map can be found in the NilOOO User's Guide, Table 5-6. 

The RAMREAD command is issued by the ReadMappedMemoryWord function. 

4.2.9 RAMWRITE 

CMR:    OB 
Inputs:   OPO = address 

OP1 = data 
Outputs: XIR = OB or error code 

This command provides a way to write the value of a specific location in the NilOOO memory map. While 
most of the mapped memory is accessible, the application programmer will want to confine himself to 
certain locations in the microprogram's scratch RAM (GRAM), which runs from location 1000 (hex) to 
location lfff (hex). The entire memory map can be found in the NilOOO User's Guide, Table 5-6. Note: 
The NilOOO Standard Microcode blocks direct access to some locations. 

The RAMWRiTE command is issued by the WriteMappedMemory Word function. 
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4.2.10 LEARNBEGEV 

CMR: 
Inputs: 

OC 
OPO = Training paradigm (1 = RCE/PRCE, 2 = PNN) 
OP1 = Smoothing factor 
OP2 = Minimum Radius 
OP3 = Maximum Radius 
DM[7:0] = Number of features (padded) -1 

Outputs: XIR = OC or error code 

This command tells the microcode that training is about to begin. The previous network will be 
overwritten, and the training parameters given are saved away for use when the vectors arrive. 

The LEARNBEGIN command is issued by the LearnBegin function. 

4.2.11 LEARNVECTOR 

CMR:    0D 
Inputs:  OPO = class* 

IRAM = input feature vector 
Outputs: XIR = 0D or error code 

SSR = various indicators, see discussion 
OP4 = local minimum distance 

This command performs teaming with the given vector according to the paradigm and parameters set 
during the LEARNBEGIN command. The class number parameter is shown in Figure 5-3. The Don't 
Commit and Don't Shrink bits are only used during multiple chip training (see chapter 6), and should be 
0 otherwise. 

15     14   13 6   5 

Don't Recognize 

Don't Commit 

Class Number 

bit 15 - Don't Commit, in multiple chip training, instructs the microcode not to commit 
the input vector as a prototype, even if it wants to 

bit 14 = Don't Recognize, in multiple chip training, makes a hole in the feature space 
corresponding to the feature vector 

bit 5:0 = Class number of the feature vector 

Figure 4-3. Class Number format for LEARNVECTOR 
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The SSR register bits of interest are shown in Figure 4-4. 

15   14     13   12   11     10    9      8 3     2      10 

Shrink 

PA Full PPRAM Count Overflow 

Bit 2 valid 

Network change flag 

Prototype committed 
bit 1 =   1 when bit 2 is valid 
bit 2 =   Network Change Flag, set to a 1 when the network has been changed 

during the current epoch 
bit 3 =   Set by LEARNVECTOR when it commits a prototype. If Don't Commit is set, 

this bit gets set if the microprogram wanted to commit a prototype, 
bit 9 =   Set during LEARNVECTOR if the PPRAM count field overflows 
bit 12 = Shrink bit, set by LEARNVECTOR if a previously existing prototype was 

shrunk to accommodate a new prototype 
bit 15= PA full, set by LEARNVECTOR if the PA is full, meaning it can't commit 

any more prototypes 

Figure 4-4. SSR bits of interest during LEARNVECTOR 

The local minimum distance is required for multiple chip training. 

The LEARNVECTOR command is issued by the Learn Vector function. 

4.2.12 LEARNEPOCH 

CMR:    0E 
Inputs:   none 
Outputs: XIR = 0E or error code 

This command indicates to the microprogram that the current pass through the training data (an epoch) 
has been completed, and that another pass is necessary. The microprogram resets the Network Change 
Flag and all the counts in PPRAM, so it must not be used at the end of the last epoch; use LEARNEND 
instead. 

The LEARNEPOCH command is issued by the LearnEpoch function. 

4.2.13 LEARNEND 

CMR:    OF 
Inputs:   none 
Outputs: XIR = OF or error code 

This command indicates to the microprogram that training is over. The microprogram exits training 
mode, saving all of the accumulated parameters. 

The LEARNEND command is issued by the LearnEnd function. 
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NI1000 RECOGNITION ACCELERATOR 

High-Speed Classification Engine for Pattern Recognition 

Accurate Recognition 
— Up to 222, 5-bit Inputs/Vector 
— Produces up to 64 Class 

Probability Estimations Using 
Weighted Sums of up to 1000 
Radial-Basis Functions 

— Estimates Class Probabilities Even 
When Class Distributions Overlap 

— Parzen Windows Technique 
— Emulates Local Receptive Field 

Neural Network 

Fast Recognition 
— 200x Acceleration Over Typical 

Host PC 
— Scalable Acceleration with Multiple 

NMOOO Chips 

Learning 
— RCE & PNN Learning On-Chip 
— Fast Learning: 1-5 Epochs 
— Incremental Learning Capability 
— Downloading Support Facilitates 

Off-Chip Learning and other 
Learning Paradigms 

Memory 
— 1000 Prototypes Representing up 

to 64 Classes Stored On-Chip 
— 222, 5-bit Features per Prototype 
— Non-Volatile Flash Prototype 

Storage Array 
— Scalable Prototype Storage with 

Multiple Nil000 Chips 

Sample Applications 
— Hand- or Machine-Printed 

Character Recognition 
— Machine Vision 
— Medical Imaging 
— Fingerprint Recognition 
— Speech Recognition 
— Industrial Inspection 

Pipelined Parallel Processing 
— 512 Distance Calculation Units 
— Three Stage Classification Pipeline 
— Double-Buffered I/O RAMs 
— 16-Bit Floating-Point Math Unit 

Microcontroller 
— 16-Bit Microcontroller 
— 4K x 16-bit Flash Program Memory 
— RCE & PNN Learning Code 

Supplied 
— May be Programmed for Other 

Radial Basis Function Paradigms 

Multichip Support 
— Bus-Oriented Data Interface 

x86-Compatible Interfacing 
— 32- or 64-bit Data Bus 
— Maximum Data Transfer Rate of 

Over 200 MB/sec 
— Digital CMOS/TTL Compatible 

State-Of-The-Art Technology 
— 0.8u CHMOS-IV 

Version Clock 
Speed 

Processing 
Time 

Connections Per 
Second 

Minimum* 
Classification Rate 

Typical** 
Classification Rate 

NM 000-25 25MHz 96|isec 2.7 Billion > 10,000 patterns/sec 17,000 patterns/sec 

NM000-10 10 MHz 240 usec 1.1 Billion > 4,000 patterns/sec 7,000 patterns/sec 

Rates assume unpipelined processing; continuously pipelined operation doubles performance. 
*  -  1000 prototypes, 222 features and 64 classes with 32-bit interface; deterministic classification. 
** - 700 prototypes, 100 features and 32 classes. Other attributes unchanged. 
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Figure 1-1. Block Diagram 

1. General Description 

The NMOOO Accelerator supports classification of over 10,000 patterns per second, with real- 
time adaptation. The chip is compatible with commonly used Radial Basis Function (RBF) 
paradigms, including Restricted Coulomb Energy (RCE), Probabilistic RCE (PRCE), 
Probabilistic Neural Networks (PNN) and other algorithms. The flexible, on-chip 
microcontroller, with its 4K x 16-bit non-volatile microcode memory, also permits 
implementation of custom algorithms. 

The Accelerator accepts input vectors with a maximum of 222 features, each with 32 levels of 
resolution, and produces up to 64 class IDs and/or probabilities. High-speed parallel 
processing units compute the city-block distance between an input vector and up to 1000 
stored prototypical examples. The Accelerator's high speed is suitable for computationally 
intensive applications like optical character recognition, fingerprint identification and industrial 
inspection. 

Pattern recognition is the process of sorting input data into categories or classes that are 
significant to the user. Prototypical sets of values of differentiating traits (features) for each 
class must first be loaded into the chip's memory. The contents of the chip's memory can be 
developed manually or extracted from examples of data typical to the problem, using a 
learning algorithm. Feature sets are problem-specific and may consist partially or completely 
of stored data, such as historical records, or of direct sensor inputs. Once learning is 
complete, the system is ready to classify input data. The Nil 000 Recognition Accelerator 
supports incremental learning in the field, which may be necessary to further adapt the 
recognition system to its environment. 

The Accelerator consists of two main parts: a classifier and a general-purpose 16-bit 
microcontroller. The classifier performs distance calculations between the input vector and a 
set of up to 1000 stored prototypes , using an array of 500 dedicated processors. Its outputs 
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are firing class IDs and probability densities, with the latter calculated in six phases handled 
by a six-stage pipelined processor. The microcontroller implements on-chip learning 
algorithms and interacts with software running on the host. 

Both the input and output stages of the classifier are equipped with alternating double buffers, 
so that the classifier does not stall during I/O. The host interface can be selected for 32- or 64- 
bit data bus width, and it supports a single-transfer-per-clock burst mode. 

Figure 1-2 is a block diagram of the internal hardware architecture. The upper part of Figure 
1-2 shows the classifier, the bottom part shows the microcontroller, and the middle part shows 
the interface to the host. 

In an application environment, the classifier receives data from the host system through the 
bus interface, processes it, and sends the classification results back through the bus interface 
to the host. The classifier exploits both array and pipeline parallelism to perform over 10,000 
classifications per second. The parallel hardware of the Distance Calculation Units and their 
tight coupling to the Prototype Array (PA) are responsible for much of this processing power. 
The Prototype Array holds 1024 (raw prototypes) x 256 (feature values) x 5 (bits per feature), 
for a total of 1.3 million non-volatile Flash storage bits. Note that the 1024x256 physical 
array provides 1000x222 storage locations usable for classification. Additional prototype 
storage is possible using multiple Nil000 Accelerators and a higher effective input feature 
resolution is possible using two or more Nil000 features to represent each feature. 

Each of the 512 parallel Distance Calculation Units calculates a city-block distance (see 
Chapter 2) by summing the differences produced by its absolute value subtractor. The 
subtraction is performed on each feature of the input vector and the corresponding feature of 
one of the prototype vectors stored in the Prototype Array. The DCUs are multiplexed twice in 
time to achieve a sustainable processing rate of over 12 billion operations per second and a 
bandwidth of over 30 Gbps. 

The classifier's Math Unit (MU) calculates probability densities and results classes 
concurrently. The actual calculations performed are discussed in section 4.3.5. 

The MU uses a six'stage pipeline with a resolution of 16-bits for floating-point computations 
(10-bit mantissa and 6-bit exponent). It places results into one of two static RAMs. This 
double-buffering scheme allows the Math Unit to continue processing a second vector without 
interrupting the classification pipeline. The Prototype Parameter RAMs (PPRAMs) hold 
parameters like the radius(r), smoothing factor (k), and Count(C), described in Section 4.3.3. 

The bottom part of Figure 1-2 shows the microcontroller. It is a fully custom, 16-bit, Harvard- 
architecture microcontroller that supervises learning, performs chip maintenance tasks, and 
maintains communication with the host. It can also exchange interrupts with the host. The 
4k x 16-bit PGFLASH Flash memory stores the microcontroller programs. All memory devices 
are memory-mapped to the microcontroller's address space, with the exception of the the 
microcontroller's program memory (PGFLASH). Other facilities available to the 
microcontroller include 256 words of general-purpose static RAM (GRAM) and a free-running 
32-bit timer. Classification must stop while the microcontroller accesses these memories. 

The microcontroller can enable an automatic classification mode in which a series of logic 
blocks, arranged as a pipeline, process data and output the results to the host. The 
classification pipeline consists of input buffers, distance calculation units, a large FLASH 
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prototype array that stores the results from the learning process, a mathematical unit and its 
output memories, and an output buffer. At 25MHz, the pipeline can classify over 10,000 input 
vectors per second, in which each input vector has up to 222 5-bit features. The performance 
is made possible by the NMOOO parallel architecture, which can execute over 12 billion 
operations per second at 25 MHz. A typical Von Neumann machine would need to execute 
more than 40 billion instructions per second to approach the processing rate achieved by the 
Nil 000 Recognition Accelerator. 

The middle part of Figure 1-2 shows the interface to the host, which consists of input buffers 
(IRAM), an output buffer (ORAM), and sixteen I/O control registers. The external data bus can 
be either 32 or 64 bits wide and will perform single-clock burst transfers. The input stage 
buffers two full-sized vectors. The outputs can be either in IEEE standard 32-bit floating-point 
format or the internal 16-bit floating-point format. Both the host and the Accelerator's on-chip 
microcontroller can access the sixteen 16-bit I/O control registers. The registers contain 
various control parameters for the Accelerator and provide a general channel for 
communication between the microcontroller and the host. 
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Figure 1-2. Internal Architecture 

In most applications, the Accelerator will reside on a bus that is shared with a host CPU and 
perhaps other Ni1000 Accelerators, as shown in Figure 1-3. The Accelerator is a slave device 
on the host bus; it will not initiate data transfers on the bus. Both the host and the on-chip 
microcontroller have the ability to interrupt each other. 

Figure 1-3 shows a local host CPU on an add-in card for personal computers and 
workstations. The CPU manages the flow of data to/from the Accelerator(s). The CPU may 
also have other functions, such as preprocessing data, interpreting classification results, or 
coordinating the operation of multiple chips. Other implementations may rely on the CPU of 
the system board for these functions. 
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Figure 1-3. Multichip Add-In Board 
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2. Pinout 

2.1  Pin List 

Table 2- 1. Pin List (Sorted By Pin Number) 

Pin Signal Pin Signal Pin Signal Pin Signal 
A1 A3 C9 TEST# J15 D15 Q10 D16 
A2 A4 C10 64/32# J16 Vcc Q11 CLK 
A3 A7 C11 MC# J17 Vss Q12 RDY# 
A4 A9 C12 Vcc K1 Vss Q13 D43 
A5 A11 C13 IACK# K2 Vcc Q14 Vss 
A6 A13 C14 Vss K3 D61 Q15 Vcc 
A7 Vss C15 Vcc K15 D36 Q16 D9 
A8 Vss C16 D1 K16 Vcc Q17 D41 
A9 Vss C17 D35 K17 Vss R1 D24 
A10 Vss D1 AO L1 D28 R2 D55 
A11 SCRH# D2 Vcc L2 D60 R3 D22 
A12 RESET« D3 Vss L3 D29 R4 Vcc 
A13 MCINT# D15 Vss 115 D37 R5 Vss 
A14 ERROR# D16 Vcc L16 Vcc R6 Vcc 
A15 D46 D17 D3 L17 Vss R7 D50 
A16 D47 E1 N/C M1 Vcc R8 Vcc 
A17 D33 E2 Vss M2 D27 R9 Vcc 
B1 A2 E3 vex M3 D59 R10 Vcc 
B2 A5 E15 BLAST# M15 D7 R11 Vcc 
B3 A8 E16 Vss M16 D38 R12 BRDY# 
B4 Vcc E17 D4 M17 D6 R13 Vss 
B5 Vss F1 D63 N1 D26 R14 Vcc 
B6 A15 F2 Vss N2 Vss R15 D12 
B7 Vcc F3 CMON# N3 D58 R16 D11 
B8 Vcc F15 W/R# N15 D40 R17 D42 
B9 Vcc F16 D2 N16 Vss S1 D23 
B10 Vcc F17 Vcc N17 D39 S2 D54 
B11 MULTCHIP# G1 Vss P1 D57 S3 D53 
B12 Vcc G2 Vcc P2 Vcc S4 D52 
B13 Vss G3 D31 P3 Vss S5 D51 
B14 Vcc G15 ADS# P15 Vss S6 D18 
B15 D14 G16 DO P16 Vcc S7 D49 
B16 D32 G17 D5 P17 D8 S8 Vss 
B17 D34 H1 Vss Q1 D25 S9 Vss 
C1 A1 H2 Vcc Q2 D56 S10 Vss 
C2 A6 H3 D62 Q3 Vcc S11 Vss 
C3 Vcc H15 CS# Q4 Vss S12 BERR# 
C4 Vss H16 Vcc Q5 D21 S13 SRQ# 
C5 A10 H17 Vss Q6 D20 S14 D45 
C6 A14 .J1 Vss Q7 D19 S15 D13 
C7 A12 J2 Vcc Q8 D17 S16 D44 
C8 Vpp J3 D30 Q9 D48 S17 D10 
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2.2 Pin Configuration 

1 2 3 4 5 6 7 8        9       10 11       12       13 14 15 16 17 

s 
D23 
0 

D54 
0 

D53 
0 

D52 
0 

D51 
O 

D18 
0 

D49 
0 

Vss     Vss     Vss 
0        0        O 

Vss BERR#SRQ# 
0        0        0 

D45 
0 

D13 
0 

D44 
0 

D10 
0 

R 
D24 
0 

D55 
O 

D22 
O 

Vcc 
O 

Vss 
O 

Vcc 
0 

D50 
0 

Vcc     Vcc     Vcc 
0        0        O 

Vcc BRDY# Vss 
O         O        O 

Vcc 
O 

D12 
0 

D11 
O 

D42 
O 

Q 
D25 

0 
D56 
0 

Vcc 
0 

Vss 
0 

D21 
O 

D20 

0 
D19 
0 

D17     D48     D16 

0         0         O 
CLK   RDY«   D43 
0         0         0 

Vss 
0 

Vcc 
0 

D9 
0 

D41 

0 

P 
D57 
0 

Vcc 
O 

Vss 
O 

Vss 
O 

Vcc 
0 

D8 
O 

N 
D26 

O 
Vss 
O 

D58 
O 

D40 
O 

Vss 
O 

D39 
O 

M 
Vcc 
O 

D27 
O 

D59 
O 

D7 
O 

D38 
O 

D6 
O 

L 
D28 
0 

D60 
O 

D29 
0 

D37 
0 

Vcc 
O 

Vss 
O 

K 
Vss 
0 

Vcc 
O 

D61 
O 

D36 
0 

Vcc 
O 

Vss 

O 

J 
Vss 
0 

Vcc 
O 

D30 
O 

168-pin PGA 
Bottom (Pin-Side) View 

D1S 
O 

Vcc 
O 

Vss 
O 

H 
Vss 
0 

Vcc 
O 

D62 
O 

CS# 
0 

Vcc 
0 

Vss 
O 

G 
Vss 
0 

Vcc 
O 

D31 
O 

ADS« 
0 

DO 
O 

D5 
0 

F 
D63 
0 

Vss 
O 

CMON# 
O 

W/R# 
O 

D2 
O 

Vcc 
0 

E 
N/C 
O 

Vss 
O 

Vex 
O 

BLAST« Vss 
O        O 

D4 
O 

D 
AO 
0 

Vcc 
O 

Vss 
O 

Vss 
0 

Vcc 
0 

D3 
0 

C 

B 

A1 
0 

A2 
0 

A6 
0 

A5 
0 

Vcc 
0 

A8 
0 

Vss 
O 

Vcc 
0 

A10 
O 

Vss 
0 

A14 
O 

A15 
0 

A12 
O 

Vcc 
0 

Vpp TEST* 64/32« MC#    Vcc   IACK# 
O        O        O        0         0        O 

MULT- 
Vcc     Vcc     Vcc   CHIP*   Vcc     Vss 
0        0        O        0        0        0 

Vss 
O 

Vcc 
0 

Vcc 
O 

D14 
0 

D1 
O 

D32 
0 

D35 
O 

D34 
0 

A 
A3 A4 

0 
A7 
0 

A9 
O 

A11 
O 

A13 
0 

Vss 
0 

Vss     Vss     Vss 
0        0        O 

SCRH*RESET#MCIN'niERROR# D46 
0           O           O           O           0 

D47 
0 

D33 
O 

10      11       12       13      14       15 16       17 

MHDOO 

Figure 2-1. Pin Configuration (Bottom View) 
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3. Signal Descriptions 

Name Type Description 

Clock, Address, and Data (Synchronous) 

CLK 

A[0:15] 

D[0:63] I/O 

Clock. This clock must be shared with or divided down from the 
bus clock, so that all bus transactions are synchronous with it. 

Address. Driven by the host to access the Accelerator's 
microcontroller program memory (PGFLASH), prototype-array 
memory (PA), prototype-parameter memory (PPRAM), and control 
and status registers. Detailed memory and register address maps 
are given in the Nil 000 Recognition Accelerator User's Guide. 

Data. As inputs, the host writes pattern vectors for classification, 
control information, and microcontroller programs on this bus. The 
inputs include 5-bit input vector components; 16-bit data, register 
contents, and microcontroller instructions; or 64-bit multiple-input 
vectors. 

As outputs, the host reads pattern classifications or probabilities, 
status information, and microcontroller-program verification. The 
outputs include 8-bit classes; 16-bit data, register contents, and 
microcontroller instructions; 32-bit IEEE standard floating point 
values; or 64-bit groups of classes or probabilities. 

Bus-Cycle Definition and Control (Synchronous) 

ADS# 

CS# 

BLAST* 

W/R# 

RDY# 

Address Strobe. When asserted by the host on a rising edge of 
CLK, this signal causes the Accelerator to sample CS# and the 
address on A[0:15], thereby initiating a bus cycle. 

Chip Select. Asserted by the host to indicate that the Accelerator 
is being addressed. The signal must be held asserted throughout 
the bus cycle. The signal is used to select one of potentially multiple 
Nil 000 Accelerators. 

Burst Last. When asserted by the host, this signal indicates the 
last data transfer in the current cycle, whether burst or non-burst. 
For burst cycles, the host holds BLAST# negated until the last data 
transfer of the cycle, during which it asserts BLAST*. For non- 
burst cycles, the host asserts BLAST* during the first (and only) 
data transfer. The signal is compatible with the x86 BLAST* 
architecture. 

Write or Read. Driven by the host on the same rising clock edge 
as ADS#, CS#, and BLAST*, to indicate that the current bus cycle 
is a write (high) or read (low). 

Non-Burst Ready. When asserted by the Accelerator, this signal 
indicates that the data on D[0:63] is valid (for output) or accepted 
(for input) and that it is the last data transfer in the current bus 
cycle. The signal terminates the bus cycle. For a burst cycle, RDY* 
is only asserted on the last transfer of the burst. 
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BRDY# 0 Burst Ready. When asserted by the Accelerator, this signal 
indicates that the data on D[0:63] is valid (for output) or accepted 
(for input) and that more data may be transferred in the current bus 
cycle. The signal does not terminate the current bus cycle and is 
not asserted on the last transfer of a burst; instead, RDY# is 
asserted. 

BERR# 0 Bus Error. When asserted by the Accelerator, this signal indicates 
that bus is in an illegal state. For example, the host may attempt to 
write to the input buffer when the Accelerator is not in an 
appropriate mode or when the buffer is full, or the host may attempt 
to access the output buffer before data is available. The signal also 
terminates the current bus cycle. This signal is open collector. 

64/32# 1 64-Bit or 32-Bit Data Bus. Driven by the host to select 64-bit 
(high) or 32-bit (low) operation on the D[0:63] bus. 

MC# 1 Microcontroller. Asserted by the host on the same rising clock 
edge as ADS# and CS# to read or write the Accelerator's 
microcontroller-program memory (PGFLASH). 

MULTCHIP* 1 Multi-Chip Operation. Asserted by the host or tied to ground when 
multiple Nil (XX) Accelerator chips are to operate in parallel on the 
same address and data bus. A learning algorithm may sample this 
to alter behavior for multi-chip learning. 
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Interrupt Control (Asynchronous) 

SRQ# Service Request Asserted by the Accelerator's microcontroller to 
indicate that valid output is available on the data bus, an error has 
occurred, or asserted when the microcontroller writes to the XIR 
register, indicating that some action by the host is needed. It is 
held asserted until the host asserts the LACK* signal. 

IACK# 

MCINT# 

ERROR* 

RESET* 

I/O 

Interrupt Acknowledge. Asserted by the host to acknowledge that 
it sampled the Accelerator's assertion of SRQ#. 

Microcontroller Interrupt Asserted by the host to force the 
Accelerator's microcontroller to jump to a specified program 
address. 

Error. As an input, asserted by the host to interrupt to the 
microcontroller. On receiving an error, the Accelerator will 
determine the reason for the interrupt by reading the MR register. 

As an output, asserted by the Accelerator to indicate that an 
internal error, such as data underflow or overflow in an I/O buffer. 
On receiving an error, the host should read the status register, XIR, 
to determine the nature of the error. This signal is open collector. 

Reset Asserted by the host to halt and reinitialize the Accelerator. 
The NU 000 remains in the reset state until, the host writes a 0 to 
bit 15 of CMR, whereupon the microcontroller begins executing 
instructions in NORMAL mode from location 1 in the PGFLASH 
(address F001h). 

The host can also reset the Accelerator by writing a 1 to bit 15 of 
the CMR register. 

System and Power 

V, 
pp 

"cc 

"ss 

+5 Volt Memory Supply. Used during normal operation by the 
prototype array (PA) and the microcontroller's program flash 
memory (PGFLASH). 

+12 Volt Programming Supply. Used during programming by the 
prototype array (PA) and the microcontroller's program flash 
memory (PGFLASH). 

+5 Volt Supply. 

Ground. 

Type: I = Input, O = Output, P = Power or Ground. 
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4. Architecture 

The internal hardware architecture was shown in Figure 1-2. In the following section, the three 
parts that constitute the Accelerator (the bus interface, the classifier and the microcontroller) 
are described after showing how the memory space of the Accelerator is divided into logic 
blocks. 

4.1.1   Internal Address Map 

Table 4-1 summarizes the memory and registers used in the Nil 000 Accelerator. The third 
column indicates whether the host can write and/or read the location. The fourth column 
indicates the same information for the microcontroller (MC). A dash (-) indicates that the 
location is inaccessible. 

Table 4-1. Memory and Register Address Map 

Address 
(Hex) 

Name Host 
W/R 

MC 
W/R 

Description 

I/O Registers 

0000 CMR W/R R Chip Mode Register. 

0008 DIM W/R W/R Vector Dimension Register. 

0010 IDR R R Chip ID Register. 

0018 SSR W/R W/R Software Status Register. 

0020 HS1 R R Hardware Status Register 1. 

0028 HS2 R R Hardware Status Register 2. 

0030 XIR R W/R External Interrupt Register. 

0038 IIR W/R R Internal Interrupt Register. 

0040 CRA W/R W/R Control Register A. 

0048 CRB W/R W/R Control Register B. 

0050 OPO W/R W/R General-purpose operand register 0. 

0058 OP1 W/R W/R General-purpose operand register 1. 

0060 OP2 W/R W/R General-purpose operand register 2. 

0068 OP3 W/R W/R General-purpose operand register 3. 

0070 OP4 W/R W/R General-purpose operand register 4. 

0078 OP5 W/R W/R General-purpose operand register 5. 
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Table 4-1. Memory and Register Address Map (continued) 

GRAM 

1000- 
10FF 

GRAM - W/R Microcontroller general purpose memory, 256x16. 

TIMER 

1C00- 
1C01 

TIMER - R Clock count. Low word in 1 COO, high word in 1C01. 
Cleared upon reset. 

IRAM 

2000 IRAM_HW W - IRAM host writable address. 

2000- 
20FF 

IR1_MCR - R IRAM1 microcontroller readable addresses. 

- W IRAM1 microcontroller byte-oriented pre-write latches. 
Data occupy the high 5 bits of each byte. 

2100- 
21FF 

IR2_MCR - R IRAM2 microcontroller readable addresses. 

- W IRAM2 microcontroller byte-oriented pre-write latches. 
Data occupy the high 5 bits of each byte. 

2400- 
24FF 

IR1_MCW - W IRAM1 microcontroller writable addresses. 

2500- 
25FF 

IR2_MCW - W IRAM2 microcontroller writable addresses. 

ORAM 

2800 ORAM_HR R - ORAM host readable address. 

2800- 
283F 

OR_MCR - R ORAM microcontroller readable addresses. 

2C00- 
2C3F 

OR_MCW - W ORAM microcontroller writable addresses. 

PADCU Registers 

3001 CSA - W/R PADCU Control and Status register. 

3002 MODE - W/R PADCU Mode register. 

3004 DCU_DIM ** W PADCU Dimension register. It contains the dimension 
of the input vector minus 1. The value is from 0 to 
255, inclusive. 

3008 NCA ~ W PADCU register that contains the prototype array 
index of the last prototype in use by the active 
network, (see description) 

3010 NCB - W PADCU register that contains the MU clock count. 

3020 AUX - W/R PADCU auxiliary register. 
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Table 4-1. Memory and Register Address Map (continued) 

3040 

CSB - W/R PADCU control and status register. 

3200 ARR W/R PADCU Address Relocation register. Contains the 
starting position (lowest number row and column) of 
the PA block in use. Value for dimension must be 
multiple of 32, and column boundary must be multiple 
of 128. 

PPRAMs and Registers 

4081 PPRAMCR3 - W/R PPRAM3 control register. 

4101 PPRAMCR2 - W/R PPRAM2 control register 

4201 PPRAMCR1 - W/R PPRAM1 control register 

4381 PPRAM_CR - W PPRAM global control register. It is used to write all 
three PPRAMs. 

4400- 
47FF 

PPRAM1 W/R For each prototype vector, this RAM holds a 6-bit 
class ID, a 1-bit probabilistic flag, a 1-bit Used flag, 
and an 8-bit smoothing factor (mantissa plus 
exponent). 

4800- 
4BFF 

PPRAM2 - W/R For each prototype vector, this RAM holds a 13-bit 
threshold radius and configuration flags. 

5000- 
53FF 

PPRAM3 ~ W/R For each prototype vector, this RAM holds a 16-bit 
count of the number of times that vector fired in the 
last epoch of the training process. 

MURAMs and Registers 

6080 MURAM1 - R Firing class count for MURAM1. 

6OC0 MURAM2 - R Firing class count for MURAM2. 

6100 MURAM_CR - W/R MU mode-control register. 

6200- 
623F 

Flag MURAM - R 64 flags, used to indicate the firing classes for the 
current MURAM. Only the LSB is used. 

6400- 
643F 

Firing Class 
List MURAM1 

- W/R One of the two alternating 64x8-bit buffers, reserved 
for the class IDs of firing classes. 

6440- 
647F 

Firing Class 
List MURAM2 

- W/R One of the two alternating 64x8-bit buffers, reserved 
for the class IDs of firing classes. 

6800- 
683F 

Probability 
MURAM1 

~ W/R One of the two 64x16-bit buffers, used to accumulate 
the probability densities of the input vector for each of 
the 64 classes. 

6840- 
687F 

Probability 
MURAM2 

~ W/R One of the two 64x16-bit buffers, used to accumulate 
the probability densities of the input vector for each of 
the 64 classes. 
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Table 4-1. Memory and Register Address Map (continued) 

PGFLASH Registers 

7700 PGF_DR W/R - PGFLASH data register. 

7701 PGF_CR1 W/R - PGFLASH control register 1. 

7702 PGF_CR2 W/R - PGFLASH control register 2. 

7703 PGF_SR R - PGFLASH status register. 

7704 PGF_ADR W/R - PGFLASH address register. 

Prototype Array 

B000- 
B3FF 

PNUM 

DCU Used 
Flags 

DCU 
Distances 

W/R PNUM— Prototype number, which selects the 
prototype array column. The number must be from 0 
to 1023, inclusive. 
DCU Used Flags—1 -bit (bit 13) flag for each of the 
1024 prototype vectors. DCU hardware operates on a 
prototype only when the corresponding flag is set. 
DCU Distances—1024 City Block distances between 
an input vector and each of the prototypes. Each 
distance is 13-bits and aligned low. 
PADCU registers, MODE and AUX, are used for 
selection. 

B800- 
B8FF 

PDIM 

" 

W/R Prototype dimension, which selects the prototype 
array row. The number must be from 0 to 255, 
inclusive. 

PGFLASH 

F000- 
FFFF 

PGFLASH W/R R Microcontroller program memory, 4Kx16-bit. The 
microcontroller can only fetch instructions through 
PDbus. The host can access PGFLASH only in the 
PG hardware-controlled access mode. 

4.2 Bus Interface 

The bus interface is used for communication between the host and either the microcontroller 
or the classifier. It is used by the host to program the flash memory, write vectors to the input 
buffer, read classification results from the output buffer, and access a set of registers used to 
interact with the microcontroller. 
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The bus interface has an input and an output side, as shown in Figure 4-1 The external bus 
interface handles bus cycles to the host, and the internal bus interface handles bus cycles 
from the microcontroller. These interfaces are used to access these resources: 

• I/O Registers—a set of sixteen 16-bit registers used for communication between the host 
and the microcontroller. 

• Input RAM (IRAM)—a double buffer consisting of two 256 x 5 memories. Each memory 
can store one input vector. The IRAM is also integrated into the architecture of the 
classifier's pipeline. 

• Output RAM (ORAM)—a buffer that receives the contents of the current MURAM, and 
optionally reformats the probability values from the internal 16-bit floating-point format 
into the standard IEEE 32-bit floating-point format. The ORAM is also integrated into the 
architecture of the classifier's pipeline. 

From MURAM ToDCUs 
Address, Data To/From 

Microcontroller 
. k 

•16 i 

i- 
Internal Bus Interface 

'5 
.'16 
1 ' 

i V i i                                  i k 

16 '16 '16 
1 '            i ' i '                                  ^ ' 

ORAM IRAM I/O Registers 

i i                                          i k 

'32/64 • '40 '16 

I k 

4 

■y 

64 

External Bus Interface 

/32/64 

To/From Host 

NI1000-021 

Figure 4-1. Bus Interface 

Both 32- and 64-bit data bus widths are available, as selected by the 64/32# signal. This 
signal is not allowed to change dynamically. The chip must be reset following a change. 
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The NMOOO Accelerator may appear to external hardware as a block of memory. However, the 
host can only access IRAM and ORAM through addresses that act like I/O ports, in which the 
same address is accessed over and over, until all data have been transferred. Register bits 
indicate when the buffer memories are about to overflow or underflow, and a bit in the CRA 
register can be programmed to cause assertion of the service request SRQ# output to the host 
when the ORAM is full (see Chapter 5 for a description of the CRA register). 

The IRAM, ORAM and virtually all other memories in the Accelerator are mapped into the 
microcontroller's address space and can be accessed by the microcontroller when the 
classifier is not running. 

The main signals of the bus interface are: 

CLK—clock input. 
A[0:15]—address bus, input from host. 
D[0:63]—64-bit bidirectional data bus. 
ADS#—address/data strobe input from host. 
W/R#—read/write input from host. 
RDY#—bus cycle termination output to host. 
BRDY#—bus cycle termination output with burst-mode request. 
BLAST*—input from host indicating the last data transfer of a cycle. 

The last two signals, BRDY# and BLAST*, are used for burst cycles, in which one 32-bit or 
64-bit word is transferred per clock period. Burst cycles begin like non-burst cycles, which take 
a minimum of two clock periods each (assuming the external logic can return RDY* in the 
second clock), with the assertion of ADS*. However, the assertion of BRDY* by the chip 
allows the host to enter a bus mode in which each additional data transfer requires only one 
additional cycle. The chip can exit burst mode by asserting RDY* instead of BRDY* and the 
host can exit burst mode by asserting BLAST* to indicate that the current clock period is the 
last clock period of a burst. Host support for burst mode is optional. See the "Signal 
Descriptions" chapter for a detailed description of the bus signals, and the "Bus Operations" 
chapter for the timing diagrams of bus cycles. 

4.2.1   I/O Registers 

The 16-bit I/O registers occupy addresses 0000h through 0078h in the memory map. They 
can be read by both the host and the microcontroller, but not all bits in all registers can be 
written. Their functions include: 

• Control of the operating mode of the IRAM and ORAM. 
• Access to hardware status signals. 
• Communication between the host and the microcontroller, including host commands to 

the microcontroller, or input/output parameters between the host and the microcontroller. 

4.2.1.1   CMR (Chip Mode Register) 

This 16-bit register is generally used to transfer commands from the host to the 
microcontroller. The microcontroller should not write to this register. A write by the host sets 
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IIR[15], which causes an internal interrupt to the microcontroller if the Interrupt Enable flag 
(HS1[6]) is set. When this happens, the interrupt request flag, IR, is set and visible to the 
microcontroller. Figure 4-2 shows the register, followed by its bit assignments. 

Register: CMR 

Address (hex): 0000 

Bit Assignment: 

15      14 0 

Command Opcode 

Chip Re set Bit 

Nil 000-043 

Figure 4-2. The CMR Register 

bits [0:14]     Command Opcode 
(read and write by host or microcontroller) 
User command opcode. The opcode is interpreted by the microcontroller 

software. 
bit 15 Chip Reset 

(read and write by host or microcontroller, initialized to 1 upon chip reset.) 
1 = Accelerator is reset. This bit is also set when the RESET* or MC# pin is 

asserted. 
0 = Accelerator is not reset. The value can be written only by the host. 

4.2.1.2  DIM (Vector Dimension Register) 

This 16-bit register contains the highest input vector dimension minus 1 (0-255) and the 
desired number of classes minus 1 (0-63) in PRCE output. Both the host and the 
microcontroller can read and write to this register with no immediate side-effects. However, 
the value in the register must be stable before and throughout the classification process. 
Figure 4-3 shows the register, followed by its bit assignments. 
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Register: DIM 

Address (hex): 0008 

Bit Assignment 

15 13 

Unused Desired # of Classes -1 Input Vector Dimension -1 

NH000-044 

Figure 4-3. The DIM Register 

bits [0:7]       Input Dimension 
(read and write by host or microcontroller) 
The number of NilOOO input dimensions of input vectors minus 1. 

bits [8:13]     Output Classes 
(read and write by host or microcontroller) 
The desired number of classes for PRCE output minus 1. 

bits [14:15]   Reserved. 

4.2.1.3 IDR (Chip ID Register) 

This 16-bit register is read-only by both the host and the microcontroller and hard-coded with 
the value 315Bh. It is the chip identification. Figure 4-4 shows the register. 

Register: IDR 

Address (hex): 0010 

Bit Assignment: 

15 

315Bh 

Figure 4-4. The IDR Register 
Nil 000-045 

4.2.1.4  SSR (Software Status Register) 

This 16-bit register is used to show the status of the microcontroller's software to the host. It 
can be written only by the microcontroller. It has no effect on the Accelerator's hardware. 
Figure 4-5 shows the register. Bit-assignments must be defined in the host program. The 
NilOOO Recognition Accelerator User's Guide explains how it is used in the standard 
microcontroller program that is shipped with the chip. 
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Register SSR 

Address (hex): 0018 

Bit Assignment 

15 

Not pre-defined. Meanings determined by active microcode. 

Nil 000-046 

Figure 4-5. The SSR Register 

4.2.1.5 HS1 ( Hardware Status Register 1) 

This 16-bit register is used to store the states of the microcontroller's flags, which are sampled 
at each clock cycle. It is intended to be read by the host. Reading of this register by the 
microcontroller is less efficient than using the built-in microcontroller flag-testing instructions. 
CSW is the microcontroller flag register. See the "Microcontroller" Section for its bit 
assignments. Figure 4-6 shows the HS1 register, followed by its bit assignments, which are 
identical to that of CSW. Microcontroller flags are not the only flags that are used by the 
Accelerator. The Prototype Parameter RAMs (PPRAMs) have Used and Disabled flags, and 
the Distance Calculation Units (DCUs) also have Used flags. 

Register: HS1 

Address (hex): 0020 

Bit Assignment: 

15       14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved 
D 
C 

M 
2 

M 
1 

F 
W 

M 

C 
G 
E 

S 
E 

1 
E 

T 
R 

O P N Z c 

NI1000-047 

Figure 4-6. The HS1 Register 
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All bits are read-only by both the host and the microcontroller. 1 = set, 0 = clear. 

bitO Carry 
bit 1 Zero 
bit 2 Negative 
bit 3 Positive 
bit 4 Overflow 
bit 5 Interrupt Request 
bit 6 Interrupt Enable 
bit 7 Stack Error 
bit 8 General Error 
bit 9 Multi-Class Firing 
bit 10 FLASH-Write 
bit 11 MURAM1 Ready 
bit 12 MURAM2 Ready 
bit 13 PADCU Busy 
bit 14 Reserved 
bit 15 Reserved (always cleared to 0) 

4.2.1.6  HS2 (Hardware Status Register 2) 

This 16-bit register is used to indicate the status of the hardware units other than the 
microcontroller. Bits 10 through 15 are particularly important, since they indicate the mode of 
the Accelerator and the full or empty status of IRAM and ORAM. They should be checked by 
the host before loading input vectors for classification, and before reading classification 
results. Figure 4-7 shows the register, followed by its bit assignments. 

Register: HS2 

Address (hex): 0028 

Bit Assignment: 

15 3 2 10 

Nil 000-048 

Figure 4-7. The HS2 Register 
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bit 0 PADCU Busy 
(read-only by host) 
1 = PADCU is busy. 
0 = PADCU is not busy. 

bit 1             MU Busy 
(read-only by both the host and the microcontroller) 
1 = MU is busy. 
0 = MU is not busy. 

bit 2 Complement of SRQ# Output 
bäs [3:6]       Last I/O Register Written 

(read-only by both the host and the microcontroller) 
Contain bits [3:6] of the address of the last I/O register written, either by the 
microcontroller or the host. Thus, either the host or microcontroller can 
determine the address of the last I/O register written by reading HS2. 

bit 7 64/32* Status 
(read-only by both the host and the microcontroller) 
1 = Host data bus is 64-bit. 
0 = Host data bus is 32-bit. 

bit 8              MULTICHIP» Status 
(read-only by both the host and the microcontroller) 
The MULTICHIP* bit reflects the inverse of the state of the MULTCHIP# pin. 
Although originally intended to be used for multi-chip training, it is not used 
in the standard microcode. 

bit 9 Multiple Firing Classes 
(read-only by both the host and the microcontroller) 
1 = ORAM contains multiple firing classes. 
0 = ORAM does not contain multiple firing classes. 

bit 10            ORAM Fully Read 
(read-only by both the host and the microcontroller) 
1 = ORAM has been fully read by the host. 
0 = ORAM has not been fully read by the host. 

This bit is necessary because multiple data transfers may be needed to 
read all of the data in ORAM. 

bit 11 IRAM Fully Written 
(read-only by both the host and the microcontroller) 
1 = IRAM has been fully written by the host. 
0 = IRAM has not been fully written by the host. 

This bit is necessary because multiple data transfers may be needed to 
write all of the data into IRAM. 

bit 12 ORAM Mode 
(read-only by both the host and the microcontroller) 
1 = ORAM is in Classify mode. The host can read ORAM if it is not empty. 
0 = ORAM is in Microcontroller mode. The microcontroller can access (read 

and write) ORAM. Any read attempt by the host is illegal and causes the 
Accelerator to assert BERR#. 
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bit 13 IRAM Mode 
(read-only by both the host and the microcontroller) 
1 = IRAM is in Classify mode. The host can write to IRAM if it is not full. 
0 = IRAM is in Microcontroller mode. The microcontroller can access (read 

and write) IRAM. Any write attempt by the host is illegal and causes the 
Accelerator to assert BERR#. 

bit 14 ORAMFull 
(read-only by both the host and the microcontroller) 
1 = ORAM is full. The host can read ORAM if HS2[12] is 1. 
0 = ORAM is not full. Any read attempt by the host is illegal and causes the 

Accelerator to assert BERR#. 
bit 15 IRAM Full 

(read-only by both the host and the microcontroller) 
1 = IRAM is not full.  The host can write another vector to IRAM if HS2[13] 

is 1. 
0 = IRAM is full. Any write attempt by the host is illegal and causes the 

Accelerator to assert BERR#. 

4.2.1.7 XIR (External Interrupt Register) 

This 16-bit register is used to identify the reason for a service request (assertion of SRQ#) 
from the microcontroller to the host. It can be written only by the microcontroller. A value 
FFFFh read by the host indicates that ORAM is full. When the microcontroller writes to XIR, 
the SRQ# pin is also asserted, and stays that way until the host asserts the service 
acknowledge pin, IACK#. 

Figure 4-8 shows the register. There are no specific bit assignments for the XIR register. The 
host and the microcontroller should follow the same convention to code or decode its 
contents. For how it is used in the standard microcontroller program that is shipped with the 
chip, see the NU 000 Recognition Accelerator User's Guide. 

Register: XIR 

Address (hex): 0030 

Bit Assignment: 

15 

Defined in User Program 

Nil 000-049 

Figure 4-8. The XIR Register 
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4.2.1.8 IIR (Internal Interrupt Register) 

This 16-bit register is used to identify the reason for an interrupt request from the host to the 
microcontroller. It can only be written by the host. However, the microcontroller responds to 
this interrupt only when its interrupt-enable (IE) flag is set. The contents of IIR may be 
changed by on-chip hardware conditions, such as the loading of the CMR register, or the 
assertion of the MCINT* pin by the host. Each bit position represents a different hardware 
condition. The value in IIR is only an interrupt identifier, not an interrupt vector. Figure 4-9 
shows the register, followed by its bit assignments. 

Register: IIR 

Address (hex): 0038 

Bit Assignment: 

15       14 4 3         2         10 

Reserved Reserved 

NI1000-05C 

Figure 4-9. The IIR Register 

bit 0 MCINT# Status 
(read and write only by host) 
1 = The MCINT# pin is asserted by the host. 
0 = The MCINT# pin is deasserted. 

bit 1               ERROR« Status 
(read and write only by host) 
1 = The ERROR* pin is asserted by the host. 
0 = The ERROR* pin is not asserted. 

Ms [2:3]       Reserved. 
bits [4:14]     Reserved 

(Always reads zero.) 
bit 15 CMR Written 

(read-only by host) 
1 = The CMR register has been written by the host. 
0 = The CMR register has not been written by the host. 

4.2.1.9  CRA (Control Register A) 

This 16-bit register is used by the host to monitor and control the behavior of the IRAM and 
ORAM when the Accelerator is operating in classify mode. However, it can be written by both 
the host and the microcontroller. Figure 4-10 shows the register, followed by its bit 
assignments. 
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Register: CRA 

Address (hex):    0040 

Bit Assignment: 

15 

Reserved 

Reserved 

Figure 4-10. The CRA Register 
Nil 000-051 

bit 0 ORAM Mode 
(read and write by both the host and the microcontroller) 
(Any change in the value of this bit resets, then re-enables ORAM; HS2[14] 

is cleared to 0 to mark ORAM empty.) 
1 = ORAM is in Classify mode. Results from MURAM are loaded into ORAM 

whenever ORAM is empty. 
0 = ORAM is in Microcontroller mode. 

bit 1               RCE/PRCE 
(read and write by both the host and the microcontroller) 
(Any change in the value of this bit resets, then re-enables ORAM; HS2[14] 

is cleared to 0 to mark ORAM empty.) 
1 = Results from MURAM are PRCE results, probability densities. 
0 = Results from MURAM are RCE results, firing class IDs 

bit 2              ORAM Service Request 
(read and write by both the host and the microcontroller) 
(Initialized to 1 upon chip reset.) 
1 = SRQ# will not be asserted when ORAM becomes full. 
0 = SRQ# will be asserted when ORAM becomes full,  as indicated by 

HS2[14] = 1; FFFFh is loaded into the XIR register. 
bits [3:15]     Reserved 

4.2.1.10  CRB (Control Register B) 

This 16-bit register is used to control the software modes of the ORAM and the IRAM  It is 
written by the microcontroller. Figure 4-11 shows the register, followed by its bit assignments. 
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Register:                  CRB 

Address (hex):          0048 

Bit Assignment: 

15                  13       12       11        10        9                    7                                        3         2         10 

Reserved Reserved Reserved 

Nil 000-052 

Figure 4-11. The CRB Register 

bit 0 IRAM Reset 
(read and write by both the host and the microcontroller) 
(Initialized to 1 upon chip reset.) 
1 = puts IRAM into the reset state. 
0 = releases IRAM from the reset state. 

bit 1               ORAM Reset 
(read and write by both the host and the microcontroller) 
(Initialized to 1 upon chip reset.) 
1 = puts ORAM into the reset state. 
0 = releases ORAM from the reset state. 

bits [2:3]       Reserved 
bit 4 Floating-Point Conversion 

(read and write by both the host and the microcontroller) 
(Initialized to 1 upon chip reset.) 
1 = ORAM converts the PRCE probability densities obtained from MU into 

IEEE-754 32-bit format. 
0 = PRCE data read out of the ORAM are in the MU internal 16-bit format. 

bit 5              ORAM Mode 
(read and write by both the host and the microcontroller) 
(Initialized to 1 upon chip reset.) 
1 = ORAM is in Classify mode. 
0 = ORAM is in Microcontroller mode. 

bit 6              IRAM Mode 
(read and write by both the host and the microcontroller) 
(Initialized to 1 upon chip reset.) 
1 = IRAM is in Classify mode. 
0 = IRAM is in Microcontroller mode. 

bits [7:9]       Reserved. 
bit 10 IRAM1 Full 

(read and write by both the host and the microcontroller) 
1 = IRAM1 is full. 
0 = IRAM1 is not full. 
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bit 11 IRAM2FUII 
(read and write by both the host and the microcontroller) 
1 = IRAM2 is full. 
0= IRAM2 is not full. 

bit 12 ORAM Full 
(read and write by both the host and the microcontroller) 
1 = ORAM is full. 
0 = ORAM is not full. 

bits [13:15]   Reserved 

4.2.1.11   OP[0:5] (General Operand Registers) 

These six 16-bit registers are storage locations used to pass parameters between the host and 
microcontroller. They have no side-effects on hardware when written. Conventions for using 
these registers must be established and followed by both the host and the microcontroller. For 
how they are used in the standard microcontroller program that is shipped with the chip, see 
the NH 000 Recognition Accelerator User's Guide. 

Register: OP0-5 

Address (hex): 0050, 0058, 0060, 0068, 0070, 0078 

Bit Assignment: 

15 

Defined in User Program 

Figure 4-12. The OP Registers 
Nil 000-053 

4.2.2  Input RAM (IRANI) 

The IRAM is shown in Figure 4-13 It is a double buffer consisting of two 32 x 40 banks. Each 
bank can store one 222-feature input vector (padded to 256), with 8 five-bit features packed 
into each 40-bit word. When the classifier is running, these banks are inaccessible to the 
microcontroller, however the host can load data into the IRAM. When the classifier is not 
running, the microcontroller can directly access the IRAM. The IRAM is mapped into the 
microcontroller's address space. 
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Figure 4-13. Input RAM (IRAM) 
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Figure 4-14. IRAM Pre-Write Latch 

Each bank of the IRAM has its own set of latches and access addresses, as shown in Table 
4-2. 

Microcontroller writes to the IRAM require loading of a pre-write latch, illustrated in Figure 
4-14. The latch is addressable in the microcontroller's address space. Note that unless the 
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write latch is entirely filled with valid data, memory locations adjacent to the destination of the 
write may get overwritten with spurious data. Writing to a location in the IRAM loads the entire 
row with the contents of the latch. 

Table 4-2. IRAM Access Addresses in Microcontroller Mode 

Location Starting 
Address 

Ending 
Address 

# of Addresses Resolution of 
Data 

IRAM1 Readable 
Addresses 

2000h 20FFh 256 5 bit 

IRAM2 Readable 
Addresses 

2100h 21FFh 256 5 bit 

IRAM1 Latchable 

(Pre-Write) Addresses 

2000h 20FFh 8 

(3 least-significant 
address bits specify 
position) 

5 bit 

(5MSBsofthe/ow 
byte on the DBUS) 

IRAM2 Latchable 

(Pre-Write) Addresses 

2100h 21FFh 8 

(3 least-significant 
address bits specify 
position) 

5 bit 

(5MSBsofthe/ow 
byte on the DBUS) 

IRAM1 Writable Addresses 2400h 24FFh 32 

(higher address bits 
specify RAM row to 
be written) 

40 bits 

(written 
simultaneously) 

IRAM2 Writable Addresses 2500h 25FFh 32 

(higher address bits 
specify RAM row to 
be written) 

40 bits 

(written 
simultaneously) 

The features of the input vector, as received from the bus interface, are five-bit quantities 
aligned to the five most-significant bits of each byte on the bus interface. The three least 
significant bits of each byte are ignored. 

The autosequencing logic for loading the IRAM works differently for 32-bit and 64-bit external 
data bus widths. The vector loaded into the IRAM, as visible to the microcontroller, has a 
different organization depending on which bus width is selected. Figure 4-15 and 4-16 show 
the data alignments. 

(MSB) dddddxxx dddddxxx dddddxxx ddddxxx  (LSB) 

d=valid data bit 
x=invalid bit 

Figure 4-15. Data Alignment on 32-Bit External Bus 
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(MSB) dddddxxx dddddxxx dddddxxx dddddxxx 
dddddxxx dddddxxx dddddxxx dddddxxx 

d=valid data bit 
x=invalid bit 

(USB) 

Figure 4-16. Data Alignment on 64-Bit External Bus 

When the microcontroller accesses IRAM (read or write), data appear in the most significant 5 
bits of the least significant byte, as shown in Figure 4-17. 

(MSB) xxxxxxxx dddddxxx    (LSB) 

d=vafid data bit 

xHnvahd bit 

Figure 4-17. Internal Bus Data Alignment 

4.2.3  Output RAM (ORAM) 

The ORAM is shown in Figure 4-18. It is a small buffer, with a pre-write latch between it and 
the MURAMs. After the Math Unit completes processing of the contents in one bank of the 
Math Unit RAM (MURAM), the contents ofthat buffer are transferred to the ORAM while a new 
input vector is being read into the other MURAM buffer. 
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Figure 4-18. Output RAM (ORAM) 

The ORAM is 16 x 64-bits in size, so it can hold all of the data generated by classifying an 
input vector. 

When the classifier is running, the ORAM is accessible to the host. The number of valid reads 
that can be made from the ORAM depends on the mode. If the class-list MURAM is being 
uploaded, the number of entries in the ORAM will be equal to the number of firing classes. If 
the probability MURAM is being uploaded, the number of entries will be specified by a byte in 
the DIM register. 

The microcontroller may directly access the ORAM. On reads, the ORAM is mapped into the 
microcontroller's address space, as shown in Table 4-3. 
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Table 4-3. ORAM Access Addresses in Microcontroller Mode 

Location Starting 
Address 

Ending 
Address 

Number of 
Addresses 

Resolution of 
Data 

ORAM Readable 
Addresses 

2800h 283Fh 64 

(One of 4 words in 
16 rows) 

16 bit 

ORAM Latehable 
(Pre-Write) Addresses 

2800h 283Fh 1 

(the first block in the 
shift register) 

8 or 16 bits 

(selected with RCE#) 

ORAM Writable 
Addresses 

2C00h 2C3Fh 16 

(possible rows in 
the RAM) 

64 bits 

(written 
simultaneously) 

Microcontroller writing to the ORAM requires loading a pre-write latch, illustrated in Figure 
4-19. The write latch is also addressable in the microcontroller's address space. Like the 
IRAM, there is a special range of addresses for referencing the destination of a write. Unlike 
the IRAM, the ORAM write latch is a four-word shift register. Writing less than four words of 
data to the write latch before invoking a write operation may result in data appearing in the 
wrong position within a word. 

its 

Pre-Write 
Shift Register 

Nil 000-025 

■d—i—           4-1— 

1 
'                 i '                   ' '                 ' ' 

1 
16-Row 
SRAM 

1 
Figure 4-19. ORAM Pre-Write Latch 

When the host reads the classification results from ORAM, the output is one of those 
summarized in Table 4-4. 
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Table 4-4. ORAM Output Possibilities 

CRA[1] CRB[4] 64/32# Output 
(per bus cycle) 

Maximum Possible 
Number of Bus 

Cycles 

0 0 0 4 Classes 16 

0 0 1 8 Classes 8 

0 1 0 4 Classes 16 

0 1 1 8 Classes 8 

1 0 0 2 Unformatted 
Probability Densities 

32 

1 0 1 4 Unformatted 
Probability Densities 

16 

1 1 0 1 Formatted 
Probability Density 

64 

1 1 
1 

2 Formatted 
Probability Densities 

32 

Class information is given in the format shown in Figure 4-20. The number of bytes available 
when class information is requested is determined by the number of firing classes calculated 
by the math unit (MU). Regardless of the value of CRA[1], if the number of firing classes is 
greater than one, HS2[9] will be set to 1. The class number in the least significant 6 bits of 
each byte is valid only if the corresponding valid bit is set to indicate that this byte of 
information is valid. 

(MSB) vpnnnnnn vpnnnnnn vpnnnnnn vpnnnnnn (LSB) 

n=fiiing class # 
probabilistic bit 

v=valid byte (valid if HIGH, invalid if LOW) 

Figure 4-20. Format of RCE Classification Results 

The probabilistic bit indicates whether the classification for that class number is a reliable 
deterministic classification (p = 0) or whether probabilistic classification should be used (p = 
1). Note that the probabilistic bit only reliably indicates deterministic if prototypes are 
arranged so that the DCUs will process all probabilistic prototypes before any deterministic 
prototypes for a given class. This typically requires reordering of the prototypes after on-chip 
learning. Reordering may also be necessary if the prototype array is loaded from external 
data and a disabled column exists in the prototype array such that the prototype array must be 
shifted to avoid the disabled column. 

The order in which prototypes are processed is: 
1. From the highest numbered column in use that is less than 512 down to 0 
2. If necessary, from the highest numbered column in use above 512 down to 512 
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Probability densities appear in one of the two formats, MU Internal or IEEE Standard. See the 
"Computational Precision" section for details. The number of probability densities output is 
determined by the number of desired classes, which is specified in the high byte of the DIM 
register (bits 8 through 15). 

4.3 The Classifier 

The classifier consists of the pipeline shown in Figure 4-21. While data is being loaded into 
the double buffer at the input of the pipeline or being read from the output of the pipeline, the 
classifier can be comparing a previously loaded input vector against the prototype vectors in 
the prototype array. 

Prototype 
Array 
(PA) 

512x5 

Prototype 
Parameter RAM 

(PPRAM) 

o 
? 

3 Ä 
Ö) 
m 

3 
m 
« c 
o s 

UJ 

Input 
RAM 

(IRAM) 

<z 

Distance 
Calculation 

Units 
(DCUs) 

'48 

13 Math Unit 
6-stage Pipeline 

16 

Math 
Unit 

RAMs 
(MURAMs) 

16 Output 
RAM 

(ORAM 

32/64 32/64 
7*- 

Figure 4-21. Classifier 

The classifier consists of the following units: 

• Input RAM (IRAM)—a double buffer consisting of two 256 x 5 memories. Each memory 
can store one input vector. The IRAM is part of the bus interface unit, which is described 
in Section 3.2. 

• Prototype Array (PA)—a flash memory that holds the prototype vectors allocated during 
learning, i.e. the coordinates of the Radial Basis Function (RBF) centers. 

• Distance Calculation Units (DCUs)—a 512-processor array that performs the distance 
calculations between an input vector and each prototype vector in the PA. 

• Prototype Parameter RAMs (PPRAMs)—a memory that holds all of the data that defines 
a radial basis function except its prototype vector (which is stored in the PA). This data 
includes the RBF radius, number of vectors it recognized during the last pass through the 
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training set, etc. Unlike the PA, the PPRAM is not flash memory; it is static RAM. 
Typically, it is loaded during power-on initialization from off-chip or from a reserved 
section of the prototype array (PA). 

• Math Unit (MU)—a six-stage pipelined processor that implements the exponential for 
calculating probability densities. It also applies the threshold function, to decide whether 
an input vector falls within a prototype's influence field. 

• Math Unit RAMs (MURAMs)—a set of memories that receives the class IDs that are 
classified as similar to the input vector. It also holds the accumulated probability density 
for each class. 

• Output RAM (ORAM)—a buffer that receives the classification results for a vector and 
optionally reformats the probability values from the internal 16-bit floating-point format 
into a format compatible with the standard IEEE 32-bit floating-point format. The ORAM 
is also part of the bus interface unit, which is described in the previous section. 

4.3.1   Distance Calculation Units (DCUs) 

Figure 4-22 shows an individual distance calculation unit (DCU) from the 512-unit array. The 
DCUs are statically associated with PA columns. Due to redundant array elements, only 500 
DCUs are used for classification at any time. A DCU computes the absolute value of the 
difference between a feature (dimension) of the input vector and the corresponding feature of 
a prototype. The DCU then accumulates that value into a running tally of the distance between 
the input vector and the prototype. Such distance is calculated between the input vector and 
each valid (i.e. not disabled) prototype. 

c Value | 

O-i-KD—> DCU 
Accumulator 

13 
-!*-►       * I U. - Pi I 

NM 000-011 

Figure 4-22. Distance Calculation Unit (DCU) 

The DCU accumulates a sum of the absolute differences of each feature in the input vector 
and the corresponding feature in a prototype, called city-block distances. The following 
equation expresses the city-block distance, d, between an input vector U with / dimensions and 
a prototype vector P. 

d = l "0-Pol + lu1-Pll+ -lUj-Pjl 

The DCU has two accumulators and is used in a two-phase mode, in which half of the 
prototypes in the PA are processed during one phase, and the other half in the following 
phase. When there are 500 prototypes or less, a single phase is used that does not require the 
second accumulator. When there are more than 500 prototypes, two-phase processing is 

11/3/95 34 



NMOOO Technical Specification 

used, with the other accumulator being used during the second phase. Section 3.6 describes 
the timing of the DCUs and the classification pipeline. 

At the end of each classification pass through the prototype array, the values in the 
accumulators represent the city-block distance between the input vector and each valid 
prototype vector stored in the PA. This is used by the MU pipeline for evaluating the 
probability and threshold functions. 

4.3.2  Prototype Array (PA) 

The Prototype Array (PA) is a non-volatile flash memory. PA occupies addresses BOOOh 
through B8FFh in the memory. It can store up to 1000 222-feature prototype vectors with 5-bit 
resolution per feature. When the prototypes have 32 dimensions or less, the PA can store as 
many as 8000 such vectors by reorganizing the array using the ARR. 

The PA is organized as two 256 (row) x 512 (column) arrays. A row corresponds to a feature 
and a column corresponds to a prototype. Each array has 512 individually erasable blocks, 
each containing two columns. For example, column number 0 and column 512 are in the 
same block as are columns 1 and 513, etc. Data for either column (prototype) in a block can 
be written individually into the PA, but erasing operates on a block, potentially erasing two 
prototypes if both columns are used. It is the designer's responsibility to save the vector not 
intended for erasing. The standard microcontroller software saves and restores these 
columns when doing a COLUMNERASE command. When doing a COLUMNWRITE 
command, the host software must backup the "other" column . See Chapter 7of the NU 000 
Recogntion Accelerator User's Guide, for more information. 

Figure 4-23 shows a conceptual view of the PA flash memory being accessed by the DCUs. 
An input vector is presented as a stream of 5-bit integers. These are the individual features of 
the input vector. The 512 DCUs operate one feature of the input vector against the 
corresponding feature in up to 512 prototype vectors simultaneously. After the last prototype 
has been processed, the DCUs pass their accumulated city-block distances to the next stage 
of processing, the math unit (MU) pipeline. 
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Figure 4-23. Conceptual View of Prototype Array (PA) and DCUs 

PA flash memory can only be programmed by the microcontroller. Programming PA requires 
a 12V voltage applied to the Vpp. 

Two address ranges in the microcontroller's address space are used to read the PA An 
address in the range from BOOOh to B3FFh is used to specify one of the 1024 prototype 
vectors to read. Another range of 256 addresses from B800h to B8FFh specifies which 
features of the column are to be read. Reading is a two-step process in which a first read 
specifies either the column or the feature, and a second read specifies the remaining quantity 
Either the column or the feature can be specified first. Valid data is returned on the second 
read. The upper six bits of the data are undefined. The lower ten bits are the value of one 5-bit 
feature in both true and complement form. Figure 4-24 shows the alignment of a 5-bit feature 
p[0:4], and Figure 4-25 shows the architecture of the PA during programming. 

15 10 9 0 

Reserved P4 P4 P3 P3 P2 P2 P1 P1 PO PÖ" 

Figure 4-24. PA Data Format 
Nil 000-013 
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Figure 4-25. PA During Programming 

The last column of the PA (storage for prototypes number 511 and 1023) is used as a Bad 
Column Table(BCT). If the column is faulty, the next column (for prototype number 510 and 
1022) is used. The BCT stores the die's serial number, sorted date, and faulty column 
locations in the PA flash memory. The BCT is organized as 256 10-bit numbers. The BCT 
specifies locations of faulty blocks (containing two columns), rather than columns. The whole 
block must not be used if either column is faulty. This avoids potential problems in PA 
programming and erasing. 

Use of the BCT varies, depending on the application software. For example, when new 
prototypes are committed and programmed into the PA during learning, the host or 
microcontroller must keep track of the locations of unused good columns. Otherwise, it may 
take a long time or even damage the chip to locate the bad columns. The standard 
microcontroller software that is shipped with the chip tracks bad columns flagged in the BCT 
and ensures that these columns are not accessed. 

4.3.2.1   Control and Status Registers (CSA and CSB) 

CSA and CSB are the 16-bit control and status registers of the PA and the DCU. Their 
contents are the status of the hardware finite state machine (FSM). They are initialized to 
0000h upon power-up and chip reset (by either the host asserting the RESET* pin or writing a 
0 to CMR[15]). The microcontroller must write to these registers to provide a valid initial state 
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or to change the mode of operation. The register settings for the three modes are shown in 
Figure 4-26 and Figure 4-27. 

4.3.2.2 Hardware Setting Registers (MODE and AUX) 

The MODE and AUX registers are 16-bit hardware-mode-setting registers. They are used for 
reading, erasing and programming the flash EPROM cells of the PA. They are initialized to 
0000h. Only the values given in Figure 4-28 and Figure 4-29 are valid. Do not set them to any 
other values. 

Register: CSA 

Address (hex): 3001 

Bit Assignment: 

15 

Register Value 

Software-Controlled Mode: 

Register Value (hex): 

Disabled    Classify    Microcontroller 

0000 6C0O 8000 

Nil 000-063 

Figure 4-26. The CSA Register 

Register: CSB 

Address (hex): 3040 

Bit Assignment: 

15 

Register Value 

Software-Controlled Mode:     Disabled     Classify    Microcontroller 

Register Value (hex): 0000 6000 8000 
8800 (for FD-read) 

Nil 000-064 

Figure 4-27. The CSB Register 

4.3.2.3  Address Relocation Register (ARR) 

The PA can store as many as 1000 prototypes of 222 features (padded to 256). When there 
are fewer than 1000 vectors or fewer than 222 dimensions in each vector, the PA can be 
segmented into blocks. Each block may store the prototype vectors for a particular application 
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problem. The 16-bit ARR register specifies the starting position in the PA of the block in use. 
Figure 4-30 shows this register followed by its bit assignments. The column offset gives the 
starting column number, modulo 128, and the row offset gives the starting row number, 
modulo 32. This representation results in a total of 64 possible blocks. 

Register:                  MODE 

Address (hex):          3002 

Bit Assignment: 

15 0 

Register Value 

Software-Controlled Mode:    Disabled Classify    Microcontroller 

Register Value (hex):               0000 0100     0040 (set flags) 
0020 (clear flags) 
0080 (read flags) 

Nil 000-065 

Figure 4-28. The MODE Register 

Register:                  AUX 

Address (hex):          3020 

Bit Assignment: 

15 0 

Register Value 

Software-Controlled Mode: 

Register Value (hex): 

Disabled 

0000 

Classify    Microcontroller 

0000              0000 

Nil 000-066 

Figure 4-29. The AUX Register 
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Register 

Address (hex): 

Bit Assignment 

ARR 

3200 

15 14 

Unused 

Used Bit PA Column 

Number 
(modulo 128) 

Unused 

Used Bit PA Row 

Number 
Reserved,      (modu|0 32) 
Must be 0. ' 

Nil 000-067 

Figure 4-30. The ARR Register 

bit(s) Function/Value Description 
[0:2] Reserved 
[5:3] Row Offset Starting row number, modulo 32. 
[6] Reserved, must be 0. Forces high half of 512x512 memory if 1. 

Used for testing. 
7 Row Relocation Used Bit 

1 

0 

PA row relocation is used. Row offset is 
given by bits [4:6]. 
PA row relocation is not used. 

[8:11] Reserved 
[12:14] Column Offset Starting column number in PA, modulo of 

128. 
15 Column Relocation Used Bit 

1 

0 

PA column  relocation  is  used.   Column 
offset is given by bits [12:14]. 
PA column relocation is not used. 

Two additional registers specify the size of the block. DCUJDIM contains the dimensions of 
the prototype vectors in the block. NCA contains the index of the last prototype vectors in the 
region. This index is from 0 to 127, inclusive, when using address relocation in the low half of 
the prototype array. It is necessary to add 512 to the index when using address relocation in 
the upper half of the array. Figure 4-31 provides a graphical explanation. The starting position 
of a region (given by the ARR register) must coincide with the cross-points of the vertical and 
horizontal lines. The size of a block, however, is limited. When row relocation is enabled, a 
maximum of 32 features (28 usable) can be used and the block cannot cross the 511/512 
boundary. When column relocation is enabled, a maximum of 128 columns are available. 
This number is reduced by bad columns or if the reserved columns fall within the block. 
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Figure 4-31. Prototype Array Segmentation 

Point A is the starting point for a network with row relocation enabled. It is limited to 32 
dimensions, but may use up to 512 columns. Point B is the starting point for a network with 
column relocation. It is limited to 128 columns, but may use all 256 Ni1000 dimensions. 
Point C is the starting point for a network using both row and column relocation. It is limited 
by both the 128 prototype limit and the 32 dimension limit. 

The column and row offsets given by the ARR register are relative to location BOOOh, B800h. 
When the Column and Row Relocation Used Bits of ARR are 0, PA is addressed as described 
at the beginning of this section. When the bits are set, addressing is relative to the position in 
PA specified by the Column and/or Row Offset bits of ARR. 

4.3.2.4  Other Registers (DCU_DIM, NCA and NCB) 

The DCU_DIM and NCA registers contain information about the window of columns in use in 
the PA. These registers are shown in Figure 4-32 and 4-33, respectively. NCA is the index of 
the last prototype in the active network. As noted in the ARR description, above, this number 
is affected by column relocation. If column relocation is enabled, the number is in the range 
of 0 to 127, inclusive (index within the relocated network) if the network is in the low half of the 
prototype array. If the relocated network is in the high half of the prototype array, a 512 offset 
must be added to the index within the network. The NCB register, shown in Figure 4-34, 
contains the clock count in the math unit. This value should be 8h. 

4.3.3  Prototype Parameter RAMs (PPRAMs) 

As each 13-bit city-block distance enters the Math Unit, it is accompanied by 48 bits of 
parameters for its prototype, which come from the Prototype Parameter RAMs (PPRAMs). 
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These parameters include several fields, such as the threshold radius. The PPRAMs can only 
be written by the microcontroller, and appear as three 16-bit banks in its address space. The 
standard microcode shipped with the Nil000 provides microcode operations that perrmit 
external software to indirectly load PPRAM. This is important for externally implemented 
learning algorithms and for restoring memories from a file. 

Figure 4-35 shows the PPRAMs. The PPRAMs occupy addresses 4400h through 53FFh. The 
fields of the 48-bit word passed to the MU pipeline, broken down by bank, are shown in Figure 
4-36. 

Register: DCU_DIM 

Address (hex): 3004 

Bit Assignment: 

15 

Input Vector Dimension-1 

Figure 4-32. The DCU_DIM Register 

Register NCA 

Address (hex): 3008 

Bit Assignment 

15 

Index of Highest Prototype in Active Network 

Ni1000-072 

Figure 4-33. The NCA Register 
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Register: NCB 

Address (hex): 3010 

Bit Assignment: 

15 0 

08h 

Nil 000-073 

Figure 4-34. The NCB Register 

To/From 
Microcontroller 

To Math Unit 
Pipeline 

NI1000-015 

d 

'16 

i 

'16 

i i 

,'16 

Prototype 
Parameter 

RAM, bank 3 
(PPRAM3) 
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Parameter 
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Figure 4-35. Prototype Parameter RAMs (PPRAMs) 
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15 
PPRAM 3 
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Count 
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PPRAM2 
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    D Lambda (RBF radius) 

15 
PPRAM 1 

8         7       6         5 0 

K (decay constant) U P Class ID 

Nil 000-016 

Figure 4-36. PPRAM Word Format 

The fields of a PPRAM word are: 

• Count—C[0:15]—the number of training vectors that fall within this prototype's influence 
field during the final learning epoch; used as a factor during classification when 
calculating probability density. 

• Disable Flag—D—set to disable this prototype. 
Radius—R[1:12]—the RBF threshold radius. 

• Smoothing Factor Mantissa—Km[0:3]— unsigned mantissa of the smoothing factor of the 
exponential function. 

• Smoothing Factor Exponent—Ke[4:7]—signed exponent of the smoothing factor of the 
exponential function. 

• "Used" Flag—U—set when the PPRAM word is loaded with a valid prototype. 
. Probabilistic—P— indicates that the RBF threshold radius for this prototype is the 

minimum radius. This bit is passed through to indicate that only probabilistic, not 
deterministic, classification is possible with this prototype. This is only valid when all 
deterministic prototypes for a given class are located at higher numbered protoypes than 
any probabilistic prototypes for the same class. 
Class—S[0:5]—the class ID of the prototype. 

The 4-bit signed exponent of the exponential function's smoothing factor is added to a built-in 
bias of negative 13 (i.e., 13 is subtracted from the stored value). For example, an exponent of 
0 is really an exponent of -13. The value entered must be less than 4. Since a value of -7 to +3 
can be entered into this field, the effective exponent is -20 to -10. The 8-bit floating-point 
value for the smoothing factor has the following characteristics: 

• The mantissa has only explicit bits, no implicit leading 1 as in the IEEE floating-point 32- 
bit format. 
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• The mantissa's binary point is to the right of the value (bbbb.). 
• The exponent binary point is to the right, but the binary point is found by moving the 

binary point left 13 places from the location indicated by the exponent. Thus, if all 4 bits of 
the exponent are zero, the mantissa is multiplied by 2"1 . 

• Zero is represented by a zero mantissa, regardless of the exponent. 
• The resulting number is always non-negative. 
.     The smallest non-zero value is represented by 1111 0001, or 2(7"13) * 1 = 2"20. 
.     The largest value is represented by 0011 1111, or 2(3-13) * 15 = Z10 * (24 -1) = 2"6 - 2"1°. 
• This floating-point format is only used for the smoothing factor for PRCE and PNN 

calculations. 

Note that the effective range of the smoothing factor exponent is affected by the global offset 
stored in MURAM_CR[2:5]. 

Each PPRAM entry corresponds to one prototype vector stored in the Prototype Array. For 
example, the parameters for prototype number 200h are stored in PPRAM at address 
4400h+200h, 4800h+200h, and 5000h+200h. 

The standard microcontroller code that is shipped with the chip will copy the PPRAM Used 
flags to the PADCU. As a result, all prototypes that have their Used flag set to 1 will be 
processed by the classifier. To avoid the possibility of spurious data being processed, all 
locations in the PPRAMs should be written when they are loaded with new prototypes, and 
unused prototypes should have their Used flags cleared to 0. 
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Figure 4-37 shows the PPRAM registers. 

Memory: 

Address (hex): 

Bit Assignment: 

15 

PPRAM_CR 

4381 

Register Value 

Memory: 

Address (hex): 

Bit Assignment: 

15 

PPRAM1_CR 

4201 

Register Value 

Memory: 

Address (hex): 

Bit Assignment: 

15 

PPRAM2_CR 

4101 

Register Value 

Memory: 

Address (hex): 

Bit Assignment: 

15 

PPRAM3_CR 

4081 

Register Value 

Software-Controlled Mode:     Disabled    Classify    Microcontroller 

Register Value (hex): 0000 4000 8000 

Figure 4-37. PPRAM Registers 
Nil 000-075 

4.3.4  Math Unit (MU) 

The inputs to the first stage of the Math Unit (MU) pipeline are the fields described above for 
the PPRAM, accompanied by D, the 13-bit city-block distance calculated between the input 
vector and the prototype by the DCUs. The MU pipeline has two functions: it determines 
whether an input vector falls within a prototype's field of influence, and it calculates the 
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prototype's probability density at the point in feature space described by the input vector. The 
MU transfer function is described in the next section. 

The MU pipeline and the next functional block of the classifier, the math unit RAMs (MURAMs) 
are closely tied together. Several stages of the pipeline access data in the MURAMs. 

In the final stage of the pipeline, the scaled value for the probability density function of a single 
RBF is added to the accumulated value for all prototypes of the same class. This floating-point 
sum is written to the probability MURAM after the sixth stage of the MU pipeline, addressed by 
the sixth-stage class ID. 

Once the last probability calculation has been performed for an input vector, the double- 
buffered MURAMs reverse roles, so that the classification results for the previous vector can 
be uploaded to the host through ORAM while the next vector is processed. Both the class list 
and probability densities are computed simultaneously, so either or both can be uploaded to 
the host without re-running the classification. 

4.3.5  Math Unit RAMs (MURAMs) 

The output of the MU pipeline is loaded into the MURAMs. The architecture of the MURAMs, 
shown in Figure 4-38, is intimately tied to the pipeline. The MURAM memories include: 

• Flag MURAM—a 1 x 64 memory used as a table of classes which have already 
recognized the input vector being presented. Each entry corresponds to one of the 64 
possible classes. It occupies addresses 6200h through 623Fh. 

• Class List MURAMs—an 8 x 64 x 2 double buffer holding a list of the class IDs of 
recognized classes. A new byte is allocated every time a new class is encountered. 
(Unlike the other MURAM memories, the memories in this buffer are not indexed by class 
ID; they are addressed by counters, so they grow up from address zero.) They occupy 
addresses 6400h through 647Fh. 

• Probability MURAMs—a 16 x 64 x 2 double buffer which accumulates the probability 
value of the input vector for each class. As with the flag MURAM, each MURAM address 
corresponds to one of the 64 classes. They occupy addresses 6800h through 687Fh. 

The MU pipeline sends its data to both the class-list and probability sections of the MURAM 
bank currently waiting to receive input while the other bank is available to unload data into the 
ORAM, discussed later. After the input vectors have been processed, the MURAMs change 
roles. 

The flag MURAM is not accessible to the ORAM, so it is reused every cycle. It is indexed by 
the class ID. When a class is recognized, the bit addressed by the class ID is set. If the bit 
previously was clear, that indicates the class had not yet been recognized during the 
processing of the input vector. This causes the class counter to be incremented and allocates 
a word in the class-list MURAM. The counter keeps a running tally of the number of classes, 
which is used to address the class-list MURAM when a new word is allocated. 
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Figure 4-38. Math Unit RAMs (MURAMs) 

V 

NH 000-018 

The class-list MURAMs are 8 bits wide, consisting of a six-bit class ID, a seventh bit to 
indicate that a prototype with a probabilistic bit set is recognizing the input vector (i.e a 
deterministic classification cannot be made with high confidence), and an eighth bit to indicate 
validity. Figure 4-39 shows the format of a byte in the class-list MURAMs. 
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7 6 5 0 

NI1000-019 

V P Class ID 

Figure 4-39. Class-List MURAM Word 

The fields of a class-list MURAM word are: 

• Class ID S[0:5]—Class ID of a class that includes the input vector. 
• Probabilistic—if set, indicates that the first prototype that produced this class firing is 

known to include at least one training example within its influence field because the 
minimum radius prevented it from shirinking further. This indicates lack of confidence in 
the correctness of a deterministic classification, recommended the use of probabilistic 
classification instead. The Probabilistic bit is only meaningful if all probabilistic prototypes 
of a given class are processed by the DCUs before any deterministic prototypes. 
Prototypes are processed in the following order: 
1. From the highest column in use below 512 down to 0. 
2. Then, from the highest column in use above 512 down to 512. 

• Valid—this word has been written since reset initialization. 

The class-list MURAMs are addressed by a counter. The counter begins at zero and 
increments as new classes are encountered. 

The probability MURAMs consist of a 16-bit floating-point accumulator in the internal format of 
the NilOOO Accelerator. The internal format is provided to the outside world in its internal 
format or translated into an IEEE-compatible format as it passes out the ORAM. Figure 4-40 
shows the internal format of a word in the probability MURAMs. 

15 10 9 0 

Exponent Mantissa 

Nil 000-020 

Figure 4-40. Probability MURAM Word 

The fields of a probability MURAM word are: 
• Exponent—six-bit 2's-complement exponent. 
• Mantissa—10-bit fractional mantissa (i.e. 0 <= mantissa < 1). 

Once the last probability calculation has been performed for the current input vector, the pairs 
of class-list and probability MURAMs are swapped. This allows the processing of a new vector 
to begin immediately, while the old vector is uploaded to the host. Both the class list and 
probability densities are computed, so both are available. 
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The Math Unit transfer function is: 

0<*r<i5 

where, 
Km = unsigned mantissa of the smoothing factor, K, obtained from PPRAM, 
Ke   = signed exponent of the smoothing factor, K, obtained from PPRAM, 
Koff = global offset, stored in MURAM_CR[2:5], which is added to the exponent for 

every prototype 
d     = the calculated city-block distance 

Register: MURAM_CR 

Address (hex): 6100 

Bit Assignment: 

15 

Math Unit Transfer 
Function Offset 

Software-Controlled Mode: 

Register Value (hex): 

Bit 1 

Bits [2:5] 

Classify Microcontroller 

0000-0022        0000 

1 0 

0000-1000        0000 

Figure 4-41. The MURAM_CR Register 

4.4 Microcontroller 

The 16-bit, custom microcontroller (MC) has a Harvard architecture (i.e. physically separate 
instruction and data memories). It is supported with 4K words of flash program memory, 256- 
words of general-purpose data RAM (GRAM), and a 32-bit timer. 

4.4.1   Microcontroller Datapath 

Figure 4-42 shows the architecture of the microcontroller datapath. It has four general-purpose 
registers and a simple instruction set. Instructions consist of one or two 16-bit words. 
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Figure 4-42. Microcontroller Datapath 

There are four important microcontroller buses, shown in Figure 4-43: 

• PABUS—program memory address bus. 
• PDBUS—program memory data bus. 
• ABUS—general-purpose address bus. 
• DBUS—general-purpose data bus. 

The PABUS and PDBUS are used to access the microcontroller's flash memory. The ABUS 
and DBUS access the microcontroller's 256-word RAM, 32-bit timer, and almost all of the 
registers and memories within the classifier. The 16-bit external data interface to the Bus 
Control Unit is for PG access modes, since the PGFLASH is 16 bits wide. 
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Figure 4-43. Bus Architecture 

4.4.2  Microcontroller Registers and Flags 

There are 11 microcontroller registers, listed in Table 4-5. 

The data segment registers are used for address generation. The stack is 64 locations deep. 
SP is unsigned, starting with value 0, and points to the location after the current one. The first 
stack address is 0. Thus only 63 stack locations are available. 

The CSW register, shown in Table 4-5, is broken into the flags shown in Table 4-6. If the stack 
overflows or underflows, the SE and IR flags will be set. If the IE flag is also set, an interrupt 
will occur. The interrupt will jump to the routine whose address is stored in PPGRAM[0]. All 
conditional jump instructions test the flags for the corresponding conditions (encoded with a 
four-bit binary field in the instruction word). 
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Table 4-5. Microcontroller Registers 

Register Size Type Code (hex) Description 

R0 16 bits W/R 0 General purpose register 0. 

R1 16 bits W/R 1 General purpose register 1. 

R2 16 bits W/R 2 General purpose register 2. 

R3 16 bits W/R 3 General purpose register 3. 

ZERO 16 bits R 6 Always reads 0. 

ONE 16 bits R 7 Always reads 1. 

DS1 16 bits W/R 8 Data segment register 1. 

DS2 16 bits W/R 9 Data segment register 2. 

SP 16 bits W/R A Stack Pointer. 

PC 12 bits W/R - Program Counter. 

CSW 15 bits W/R - Control Status Word. 

Table 4-6. Microcontroller Flags 

CSW Bit Number Flag Name Abbreviation Code ($flg) 

0 Carry c 0000 

1 Zero z 0001 

2 Negative N 0010 

3 Positive P 0011 

4 Overflow O 0100 

5 Interrupt Request IR 0101 

6 Interrupt Enable IE 0110 

7 Stack Error SE 0111 

8 General Error GE 1000 

9 Multi-Class Firing MC 1001 

10 Flash-Write FW 1010 

11 MURAM1 Ready M1 1011 

12 MURAM2 Ready M2 1100 

13 PADCU Busy DC 1101 
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Bits in one of the I/O registers (HS1), correspond to the above listed flags. The register is read 
by the host to access the condition flags of the microcontroller. In addition to the conditional 
jump instructions, three other instructions contain a flag-specifier field. Two instructions, 
SFLG and CFLG, allow any flag to be set or cleared. One instruction, WAIT, suspends 
execution until a specified flag is set. 

4.4.3  Microcontroller Instruction Addressing Modes 

The read and write instructions support six addressing modes: 

• Indirect Off DS with 8-bit Offset—the address is the sum of an 8-bit field in the instruction 
and either the DS1 or DS2 registers. 

• Indirect—the address is in RO, R1, R2, or R3. 
• Indirect with Register Offset—the address is the sum of RO, R1, R2, or R3 and DS1 or 

DS2. 
• Indirect Autoincrement with Register Offset—the address is the sum of RO, R1, R2, or R3 

and DS1 or DS2. The general register is incremented after the operation. 
• Indirect Autodecrement with Register Offset—-the address is the sum of RO, R1, R2, or R3 

and DS1 or DS2. The general register is decremented before the operation. 

The jump instructions have the following addressing modes: 

• Immediate—the address is coded into the instruction. 
• Register—the value stored in the named register is placed in PC. 
• Relative—the value, either the named address offset or the value stored at the named 

register, is added to PC. 

4.4.4  Microcontroller Instruction Set 

The instruction set includes the following basic arithmetic and logical instructions: 

Double-Operand Arithmetic Instructions—add (ADD),  add with carry (ADC)   subtract 
(SUB), and compare (CMP). 
Single-Operand Arithmetic Instructions—increment (INC) and decrement (DEC). 
Double-Operand Logical Instructions—and (AND), or (OR), and exclusive-or (XOR). 
Single-Operand Logical Instructions—complement (NOT),  shift left (SHL)   shift  right 
(SHR), rotate left (ROTL), and rotate right (ROTL). 

Arithmetic and logical instructions only operate on 16-bit register operands. There are no 
operations on memory operands, other than reading data into, or writing from, a register. 

The six data movement instructions are: move (MOV), load (LD), read (RD), write (WR), push 
(PUSH), and pop (POP). The move instruction only transfers data from one register to 
another. The load instruction puts a 16-bit immediate operand following the instruction word 
into a register. The read and write instructions transfer a word between a memory location and 
a register. There are many flavors of the latter two instructions, to support a variety of 
addressing modes. The push and pop instructions transfer data between a register and the top 
of the stack. The stack is a separate 16-bit wide memory space consisting of 64 words. 
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Eight conditional jumps utilize the flags described above. The address of the target of the 
jump can be calculated using a register or a 16-bit immediate operand following the 
instruction. The address can be absolute or PC-relative; i.e. the address can replace the 
contents of the program counter, or it can be added to it. Both positive and negative polarities 
are supported for each condition. All combinations of these three options are supported. 

Ten conditional jumps first test common microcontroller conditions then jump to an address 
specified with a PC-relative 8-bit address embedded in the instruction. Four unconditional 
jumps result from combinations of where the address comes from (i.e. register or immediate) 
and how it is applied to the PC (i.e. absolute or relative). 

Five "unconditional jump to subroutine" (JS) instructions are provided. They push the program 
counter on the stack, then jump to an absolute address specified by a register or 16-bit 
immediate, or a PC-relative address specified by a register, 16-bit immediate, or 8-bit field 
embedded in the instruction word. 

In the following sections, microcontroller instructions are grouped according to their functions. 
The mnemonics and English descriptions are given. See the NH000 Recognition Accelerator 
User's Guide for more details on the instructions. 

4.4.4.1   Subroutine Calls 

JS Jump to Subroutine 
JSR Jump to Subroutine Register 
JSRR Jump to Subroutine Register Relative 
JSI Jump to Subroutine Immediate 
JSIR Jump to Subroutine Immediate Relative 
RETS Return from Subroutine 

4.4.4.2  Stack Operations 

PUSH Push 
POP Pop 
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4.4.4.3  Conditional Jumps 

Flag Condition Short 
Immediate 

Relative 

Register Register 
Relative 

Long 
Immediate 

Long 
Immediate 

Relative 

Unconditional JMP JMPR JMPRR JMPI JMPIR 
Cany JC JCR JCRR JCI JCIR 
Zero JZ JZR JZRR JZI JZIR 
Negative JN JNR JNRR JNI JNRI 
Positive JP JPR JPRR JPI JPIR 
Overflow JO JOR JORR JOI JOIR 
Interrupt Request JIR JIRR JIRRR JIRI JIRIR 
Interrupt Enable JIE JIER JIERR JIEI JIEIR 
Stack Error JSE JSER JSERR JSEI JSEIR 
General Error JGE JGER JGERR JGEI JGEIR 
Multi-Class Firing JMC JMCR JMCRR JMCI JMCIR 
Flash Write JFW JFWR JFWRR JFWI JFWIR 
MURAM 1 Ready JM1 JM1R JM1RR JM1I JM1IR 
MURAM 2 Ready JM2 JM2R JM2RR JM2I JM2IR 
PADCUs Busy JDC JDCR JDCRR JDCI JDCIR 
No Carry JNC JNCR JNCRR JNCI JNCIR 
No Zero JNZ JNZR JNZRR JNZI JNZIR 
No Negative JNN JNNR JNNRR JNNI JNNIR 
No Positive JNP JNPR JNPRR JNPI JNPIR 
No Overflow JNO JNOR JNORR JNOI JNOIR 
No Interrupt Request JNIR JNIRR JNIRRR JNIRI JNIRIR 
No Interrupt Enable JNIE JNIER JNIERR JNIEI JNIEIR 
No Stack Error JNSE JNSER JNSERR JNSEI JNSEIR 
No General Error JNGE JNGER JNGERR JNGEI JNGEIR 
No Multi-Class Firing JNMC JNMCR JNMCRR JNMCI JNMCIR 
No Flash Write JNFW JNFWR JNFWRR JNFWI JNFWIR 
No MURAM 1 Ready JM1 JM1R JM1RR JM1I JM1IR 
No MURAM 2 Ready JM2 JM2R JM2RR JM2I JM2IR 
No PADCUs Busy JDC JDCR JDCRR JDCI JDCIR 
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4.4.4.4 Flag Operations 

RDFLG Read Flags 
WDFLG Write Flags 
SFLGC Set Carry Flag 
SFLGZ Set Zero Flag 
SFLGN Set Negative Flag 
SFLGP Set Positive Flag 
SFLGO Set Overflow Flag 
SFLGIR Set Interrupt Request Flag 
SFLGIE Set Interrupt Enable Flag 
SFLGSE Set Stack Error Flag 
SFLGGE Set General Error Flag 
SFLGMC Set Multi-Class Firing Flag 
SFLGFW Set Flash Write Flag 
SFLGM1 Set MURAM 1 Ready Flag 
SFLGM2 Set MURAM 2 Ready Flag 
SFLGDC Set PADCUs Busy Flag 
CFLGC Clear Carry Flag 
CFLGZ Clear Zero Flag 
CFLGN Clear Negative Flag 
CFLGP Clear Positive Flag 
CFLGO Clear Overflow Flag 
CFLGIR Clear Interrupt Request Flag 
CFLGIE Clear Interrupt Enable Flag 
CFLGSE Clear Stack Error Flag 
CFLGGE Clear General Error Flag 
CFLGMC Clear Multi-Class Firing Flag 
CFLGFW Clear Flash Write Flag 
CFLGM1 Clear MURAM 1 Ready Flag 
CFLGM2 Clear MURAM 2 Ready Flag 
CFLGDC Clear PADCUs Busy Flag 
WAIT Equivalent to WAITIR 
WAITC Wait For Carry Flag 
WAITZ Wait For Zero Flag 
WAITN Wait For Negative Flag 
WAITP Wait For Positive Flag 
WAITO Wait For Overflow Flag 
WAITIR Wait For Interrupt Request Flag 
WAITIE Wait For Interrupt Enable Flag 
WAITSE Wait For Stack Error Flag 
WAITGE Wait For General Error Flag 
WAITMC Wait For Multi-Class Firing Flag 
WAITFW Wait For Flash Write Flag 
WAITM1 Wait For MURAM 1 Ready Flag 
WAITM2 Wait For MURAM 2 Ready Flag 
WAITDC Wait For PADCUs Busy Flag 
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4.4.4.5 Data Transfer Operations. 

MOV Move Register to Register 
LDI Load Immediate 
RDI Read Immediate 
RDR Read Indirect Register 
RD1 Read Indexed Base Register using 
RD2 Read Indexed Base Register using 
RD1R Read Indexed Base Register using 
RD2R Read Indexed Base Register using 
RD1RI Read Indexed Base Register using 
RD2RI Read Indexed Base Register using 
RD1RD Read Indexed Base Register using 
RD2RD Read Indexed Base Register using 
WRI Write Immediate 
WRRI Write Indirect Register Immediate 
WRR Write Indirect Register 
WR1 Write Indexed Base Register using 
WR2 Write Indexed Base Register using 
WR1R Write Indexed Base Register using 
WR2R Write Indexed Base Register using 
WR1RI Write Indexed Base Register using 
WR2RI Write Indexed Base Register using 
WR1RD Write Indexed Base Register using 
WR2RD Write Indexed Base Register using 

DS1 as base, 8 bit immediate as offset. 
DS2 as base, 8 bit immediate as offset. 
DS1 as base, named register for offset. 
DS2 as base, named register for offset. 
DS1 as base, named register for offset. 
DS2 as base, named register for offset. 
DS1 as base, named register for offset. 
DS2 as base, named register for offset. 

DS1 as base, 8-bit immediate as offset. 
DS2 as base, 8-bit immediate as offset. 
DS1 as base, named register for offset. 
DS2 as base, named register for offset. 
DS1 as base, named register for offset. 
DS2 as base, named register for offset. 
DS1 as base, named register for offset. 
DS2 as base, named register for offset. 

4.4.4.6  Math and Logical Operations. 

ADD Add 
ADC Add with Carry 
SUB Subtract 
CMP Compare 
INC Increment 
DEC Decrement 
NOT Logical Negation 
OR Logical Or 
XOR Logical Exclusive Or 
SHL Shift Register Left 
SHR Shift Register Right 
ROTL Rotate Register Left 
ROTR Rotate Register Right 
NOOP No Operation 

4.4.5  Microcontroller Interrupt Handling 

The Nil 000 on-chip microcontroller has a single interrupt vector at address FOOOh, which is 
the beginning of the microcontroller program memory PGFLASH. The program counter PC is 
initialized to 1 instead of 0 for this reason. 
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The microcontroller interrupt request (IR) flag, which is CSW[5], is set when one of the 
following occurs: 

The host writes to CMR, with CMR[15]=0 
The host writes to IIR 
The host asserts the MCINT# pin 
The host asserts the ERROR* pin 
The microcontroller clears the General Error flag (CSW[8]) after setting it. 

Note that the value written into CMR or IIR does not matter; any write to these registers 
causes IR to be set (except, of course, if CMR[15] is set, which resets the chip). For host 
interrupts of the micrcontroller, IIR[2:3] can be used to communicate the type of interrupt to 
the interrupt handler. 

There is no acknowledge pin for the microcontroller interrupts. The host can determine that 
the microcontroller has acknowledged the interrupt request in several ways; see the example 
given at the end of this section. 

When the interrupt is requested, the IR flag is set immediately. IR is cleared when the 
microcontroller software acknowledges the interrupt. If multiple interrupts occur before the 
microcontroller software acknowledges the first one, only one interrupt will occur. 

Interrupt request is serviced when the interrupt enable (IE) flag is set. Service is provided in 
the following steps: 

• Clear IE flag. 
• Read interrupt service routine (ISR) entry from the first location of PGFLASH, at address 

FOOOh. 
• Jump to subroutine ISR. 

Clearing the IR flag and setting the IE flag should be done by software. 

A service request by the microcontroller to the host is indicated by the SRQ# pin. It is 
asserted when the microcontroller writes to the XIR register. SRQ# is deasserted when the 
host asserts the IACK# pin. An outstanding service request is indicated by HS2[2]. 

4.4.6  Reset Initialization 

When the microcontroller is reset, the PC is initialized to address 0001 h in the PGFLASH to 
begin execution. The microcontroller can be reset by setting the MSB of the chip mode register 
(CMR). Setting this bit puts the entire chip into reset mode; clearing the bit clears the reset 
condition. The bit is set automatically when the RESET# signal is asserted. 

There are separate reset bits for the IRAM and ORAM. The IRAM and ORAM are unavailable 
to the microcontroller or the classifier while in reset mode. The reset bits must be cleared to 
enable operation of the classifier. Before they are cleared, the following things must be 
initialized: 

• 32/64-Bit Bus Width—the width of the external data bus, as defined by the level on the 
64/32# signal. 

59 11/3/95 



Nil000 Technical Specification 

• Output Mode-^whether class IDs or probability densities are the output, controlled by a 
bit in the CRA register. 

• Vector Length—the number of features in an input vector, loaded into the DIM register. 
For probabilistic classification, the number of desired classes to upload must also be 
initialized in this register. 

• Floating-Point Format—for probabilistic classification, whether the native 16-bit floating- 
point format or the IEEE-compatible 32-bit format is used for output, controlled by a bit in 
the CRB register. 

4.4.7  Errors 

Three types of errors can occur: 

• External Error—an attempt by the host to write to a full IRAM or read from an empty 
ORAM, or the assertion by external logic of the SRQ# signal. The BERR# signal is 
asserted. 

• Internal Stack Error— microcontroller has overrun or underrun the stack space. The stack 
is a physically separate 16 x 64 RAM. Popping an empty stack or pushing onto a full 
stack causes an error that asserts the stack-error flag. 

• Internal General Error— microcontroller has overrun or underrun a buffer, which asserts 
the general-error flag. 

4.5 System-Level Architecture 

Because the Accelerator is addressed like memory, it will always be a bus slave. There are 
several system design options available for the Accelerator: 

• Processor Bus—placement directly on the bus with the processor. 
• Local Bus—interface through a local bus standard, such as PCI or VL-Bus. 
• Expansion Bus—a standard interface for expansion cards, such as the ISA bus, the EISA 

bus, or Micro Channel. 
• Hardwired—a dedicated interface to an embedded controller, such as the i960 family of 

embedded RISC processors. The controller could also be an ASIC. 

The Accelerator has an input signal, MULTICHIP#, to inform microcontroller software that it is 
in a multi-chip system. The microcontroller can test this condition in the CRB register 

Multi-chip systems must contend with two issues. During training, when a new prototype is 
allocated, they must collect Dmin (the city-block distance between the input vector and the 
nearest prototype vector of a different class) from all Accelerators to find the global Dmin used 
to initialize the threshold radius of the prototype. The second issue occurs during probabilistic 
classification. The probability densities from each chip must be uploaded to the host to be 
combined. 
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4.6 Classification Timing 

The timing of the classification pipeline varies with the number of features in the input vector 
and the number of valid prototypes. If the latency is short enough, the main source of delay 
will be I/O. 

Figure 4-44 shows pipelined processing of three vectors with up to 500 prototypes. If the host 
system is not a limiting factor or if the number of features is low, filling one bank of the IRAM 
will be very quick compared to processing the vector. As soon as the first vector is loaded, it 
can be dispatched for processing while the second vector is loaded. 

Prototypes 
0 to 499 

V7Ä Input 
|        | Distance Calculation 

H Math Unit Pipeline 

Prototypes 
0 to 499 

Prototypes 
0 to 499 

Figure 4-44. Pipeline Usage (For Up To 500 Prototypes) 

After the first vector is processed by the distance calculation units, the IRAM buffers can swap 
and the third vector can be loaded. Meanwhile, the first vector is in the pipeline comprising the 
MU and MURAMs and the second vector is in distance calculation. As each vector is 
processed by the MU pipeline, it can quickly be loaded into the ORAM. 

Figure 4-45 shows pipeline operation for over 500 prototypes. Operation of the MU pipeline is 
fully overlapped with distance calculation. Up to 1000 prototypes are run against the input 
vector in two phases, up to 500 per phase. Up to 500 features are compared every two 
clocks. 
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500 to 999 
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772 Input 
I        I Distance Calculation 

I Math Unit Pipeline 

Prototypes 
0 to 499 

Prototypes 
500 to 999 

^■%] 

Prototypes 
0 to 499 

Prototypes 
500 to 999 

NI1000-034 

Figure 4-45. Pipeline Usage (For More Than 500 Prototypes) 

The number of clocks required by each stage of the pipeline can be estimated from the 
following expressions. 

Input—(BL / B) + 3 
Distance Calculation—2L + I, if P <= 512 
Distance Calculation—2(2L + I), if P > 512 
MU Pipeline—P + I 
Output—{CR / B) + C + 3 

The parameters of these expressions are shown below. 

L—Vector length. 
P— Number of valid prototypes. 
ß—Bus size (32 or 64). 
C—Number of classes required. 
R—Size of classification results (8 for RCE, 16 or 32 for PRCE) 
/—Initialization time, about 5 clocks for each block. 

4.7 Computational Precision 

The computational precision of variables is listed in Table 4-7. Floating-point probability 
densities appear in one of two formats, 16-bit internal or 32-bit IEEE, as described in the 
immediately following sections. 
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Table 4-7. Computational Precision 

Variable 

Mantissa Exponent Smallest 
Representable 

Non-Zero Value* 

Largest 
Representable 

Value* 

Actual 
Smallest 
Non-Zero 

Value* 

Actual 
Largest 
Value* 

bits format bits format 

V 5 00000 X X 1 25-1 X X 

d 13 0...0 X X 1 213-1 X X 

X 13 0...0 X X 1 213-1 X X 

Ko« 4 0000 X X 0 8 X X 

k 4 0000 4 sOOO 2-20 15*29 2"20 
15*2"2 

kd 10 .0...0 6 sOOOOO 2-20 T32-?22 2"20 218-214 

2-kd 10 .0...0 6 sOOOOO 2-37 232_222 2-37 1 

C 16 0000 X X 1 216-1 1 216-1 

0*2*" 10 .0...0 6 sOOOOO 2-37 232_222 2"37 
216-1 

SC*2*d 20 .0...0 6 sOOOOO 2-37 232_212 2-37 o26-?10 

IEEE-754 
single 
precision real 

23 1.0...0 8 S0...0 2"127 2128 
X X 

s = sign bit 
x = not applicable or not available 
* = Representable Value—Value that can be represented by the internal number format. 

Actual Value—Value that is supported by the chip, external sotware or microcode must enforce limits on K, and 

4.7.1   16-Bit Internal Format 

Figure 4-46. shows the MU internal format used for floating-point numbers. In this format, the 
6-bit exponent uses 2's complement to represent negative numbers. The number represented 
is O.F x 2±E*, where the MSB of F is 1 unless the entire number is zero. 

15 10 9 0 

E* F* 

Nil 300-026 

Figure 4-46. Internal 16-Bit Floating-Point Format 
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4.7.2  32-Bit IEEE Format 

Figure 4-47 shows the IEEE 32-bit format for floating-point numbers. The number represented 
is (-1)s x 1.F x 2E"127. There is no restriction on the MSB of F. 

31  30 22 

S E F 

NI1000-027 

Figure 4-47. IEEE 32-Bit Floating-Point Format 

Bit 4 of the CRB register selects the output format. If set, the IEEE 32-bit format is used. If 
clear, the internal 16-bit format is used. The conversion from the 16-bit format to the 32-bit 
format is accomplished through the mapping: 

s=o. * 
E = E„ + (5e)16, if E,, is negative 

E. + (7e)16, if E is positive 
F = F  x (4000)16 

4.8 Software Modes and Configurations 

This section discusses how to program the Accelerator. Adherence to the guidelines given 
below is necessary so as to avoid damage to the Accelerator. 

There are specific instruction sequences to perform the operations on some logic blocks, such 
as I/O access, Prototype Array access, PPRAM access, PGFLASH programming, 
Classification and Learning. It is crucial that logic blocks are set into appropriate modes and 
certain registers or bits in registers are written with proper values. See the NH000 Recognition 
Accelerator User's Guide for details. 
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4.8.1   General Programming Guidelines 

1. After power up, the Accelerator is in 'reset' status internally, even if the RESET# signal is 
deasserted. The host must take the Accelerator out of the reset state by writing a 0 to 
CMR[15] before any operation is attempted. 

2. When the Accelerator is released from the reset state, the program counter (PC) contains 
a 1, so microcontroller code starts execution at location 1 in the PGFLASH (address 
F001h). 

3. All volatile memories (RAMs, registers) are undefined after changing the hardware mode 
(see Table 5-1) and must be updated by the microcontroller or the host. 

4. Anytime the Ni1000 is changed from PG mode to NORMAL mode, the NMOOO will be 
reset and must be released by writing a 0 to CMR[15] after MC# is deasserted. 

5. PGFLASH must contain a valid microcontroller program before use. Otherwise, the 
microcontroller may cause unexpected results or be damaged. 

6. Data in PPRAMs are valid as long as RESET* is deasserted and power is up. PPRAM 
data may be lost after switching into PG mode. 

7. Always remove IRAM and ORAM from their reset states before use, by writing a 0 to 
CRB[0] and CRB[1], respectively. 

4.8.2 Software-Controlled Modes 

Each logic block has its own software-controlled modes. These modes determine the status of 
the blocks and the functions they can provide. Setting the software-controlled mode is 
necessary since the hardware modes (see Table 5-1) only determine the pin grouping, the 
address mapping and the bus operations; they have little control over individual blocks. Tasks 
such as classification or learning can only be performed with appropriate combinations 
software-controlled and hardware modes. Accessing the software-controlled modes is 
accomplished by writing to appropriate registers associated with each logic block. 

Table 4-8 summarizes the software-controlled modes for the relevant logic blocks, along with 
the register values for the corresponding modes. Usually, setting the software-controlled mode 
is one of many steps in the operation of a logic block. 
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Table 4-8. Software Mode Configuration 

Logic Block Register Register Value Under 
Software-Controlled Mode (hex) 

Name Address 
(hex) 

Written 
by 

Classify MC Global Reset 

PADCU CSA 3001 MC 6C00 8000 0000 
CSB 3040 MC 6000 8000 

8800 (FD-Read) 
0000 

MODE 3002 MC 0100 0040 (set flag) 
0020 (clear flag) 
0080 (read flag) 

0000 

AUX 3020 MC 0000 0000 0000 
MURAMs MURAM_CR 6100 MC Bit 1=1 

Bits{2:5]= 
0000-1000 

0000 0000 

PPRAMs PPRAM_CR 4381 MC 4000 8000 0000 
I/O CRA 0040 MC or 

Host 
CRA[0]=1 CRA[0]=0 FFFF 

CRB 0048 MC or 
Host 

CRB[0]=0 
CRB[1]=0 
CRB[5]=1 
CRB[6]=1 

CRB[0]=0 
CRB[1]=0 
CRB[5]=0 
CRB[6]=0 

CRB[0]=1 
CRB[1]=1 

All Blocks CMR 0000 MC or 
Host 

CMR[15]=0 CMR[15]=0 CMR[15]=1 

PADCU = Prototype Array and Distance Calculation Unit 
MURAMs = Math Unit RAMs 
PPRAMs = Prototype Parameter RAMs 
I/O = IRAM, ORAM, and I/O Registers 
FD-Read = DCU Used flags and distance read, a submode of MC software-controlled mode. 
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5. Bus Operations 

This chapter discusses the interaction between a host system and the Nil000 Recognition 
Accelerator through various bus operations. Figure 5-1 shows the Accelerator's buses. 
Externally, the I/O unit (IRAM, ORAM, and I/O registers) connects to the host system through 
the signal pins. Internally, the I/O unit connects to the following buses: 

• Dafa I/O Bus (DIO Bus)—Connects to IRAM, ORAM and I/O registers. The data I/O 
datapath is either 32- or 64-bit wide. 

• Internal Address and Data Buses (Abus and Dbus)—Serves as the data path of the 
microcontroller. The Abus is a 16-bit address bus, and the Dbus is a 16-bit data bus. 

• Microcontroller Program Address and Data Buses (PAbus and PDbus)—Serves as the 
internal instruction path of the microcontroller. The PAbus is a 16-bit address bus, and 
the PDbus is a 16-bit instruction (data) bus. 
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Figure 5-1. Buses 
Nil 000-035 
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5.1  Hardware Modes 

The Nil000 Accelerator supports 32-bit or 64-bit data output at a bus clock of up to 25 MHz. A 
shared clock synchronizes the bus interface between the Accelerator and host. A set of modes 
for access to the Accelerator determines which internal buses are accessible to the host, and 
which pin groups are used in data transfers with the host. The following list summarizes the 
modes supported by the Accelerator: 

NORMAL—Used for classification and learning. 
PG—Used to read or load microcontroller programs into program memory (PGFLASH). 
RESET—Used to suspend precharging and most latching, and re-initialize state machines. 

After power up, the Accelerator idles in a reset state and must be removed by the host by 
writing a 0 to bit 15 of the CMR register (see the "Architecture" chapter for details), in addition 
to setting the appropriate signals as described in the following. The address space accessible 
by the host in these modes may be one of the following: 

• I/O unit (access IRAM through address 2000h, ORAM through 2800h, and I/O registers). 
• PGFLASH and associated registers. 

Other memory locations and registers can only be accessed by the microcontroller. See the 
"Architecture" chapter for details. The address pins A[0:15] are mapped to the 
corresponding internal address space. Table 5-1 summarizes the control-signal settings and 
mapping of data and address pins for the access modes. 

Table 5-1. Hardware Modes 

Mode Access Mode Control Signals Data Bus3 Address 
Bus 

cs# W/R* MC» RESET* 64/32« D[0:15] D[16:31] D [32:63] A[0:15] 

NORMAL 
Write 

0 1 1 1 1 orO DIO[0:15] DIO[16:31] DIO[32:63] AIO[0:15] 

NORMAL 
Read 

0 0 1 1 1or0 DIO[0:15] DIO[16:31] DIO[32:63] AIO[0:15] 

PG1 Write 0 1 0 1 0 PDBUS[0:15] undefined undefined PABUS[0:15] 

PG1 Read 0 0 0 1 0 PDBUS[0:15] undefined undefined PABUS[0:15] 

RESET2 X X X 0 X inactive inactive inactive inactive 

1. During the PG mode, the internal logic (except PGFLASH contents and registers) is reset. 
2. During RESET, the internal logic (including PGFLASH registers) and the external bus interface are reset, except 

the non-volatile PGFLASH contents. 
3. When 64/32# is asserted, 32-bit data bus (D[0:31]) is selected. When 64/32# is deasserted, 64-bit data bus 

(D[0:63J) is selected. 

When used for output, the data-bus bits are grouped as one of the following: 

• 8-bit data for firing class IDs. 
• 16-bit data for unformatted probabilities. 
• 32-bit data for floating-point numbers. 
• 64-bit data for two floating-point numbers. 
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When used for input, the data-bus bits are grouped as: 

• 8-bit data for input vector components. 
• 16-bit data for register contents and microcontroller instructions. 

See the "Architecture" chapter for details. Input vector components are aligned to the high 
order 5 bits for each byte. For example, the first 5-bit component in each input vector should 
be transferred to the Accelerator on pins D[3:7], with D7 receiving the most-significant bit of 
the component. The three least significant bits, D[0:2], are ignored. 

The Accelerator does not always require the use of all 64 data I/O bits for transfers with the 
host. Examples include: 

• The Accelerator is operated in a system with a 32-bit data path. In this case, the upper 32 
data pins are not used in the data transfer. 

• The internal resources being accessed have a 16-bit data path. This is the case in the PG 
modes; the PDbus and the Dbus are only 16 bits wide. 

5.1.1 Normal Mode (NORMAL) 

NORMAL mode has the following characteristics: 

• The Accelerator may perform classification, learning or housekeeping. 
• The Accelerator acts as a slave processor in interactions with the host. 
• The Accelerator uses its SRQ# signal to request service. See Chapter 5 of the NU000 

Recognition Accelerator User's Guide for details of microcontroller interrupt handling. 
• Input vectors may be sent to the Accelerator and classification results may be received bv 

the host. y 

• Commands may be written to the Accelerator and status read by the host. 
• The classification pipeline may be enabled or the Accelerator may operate under control 

of the microcontroller for learning or housekeeping. 

The host writes and reads via the I/O unit's buffers, namely the IRAM, ORAM, and I/O 
registers. The width of the data path could be either 64 or 32 bits, as indicated by the 64/32# 
signal. See Chapter 5 for the accessible address spaces. Accessing addresses other than 
those for the IRAM, ORAM and I/O registers will yield invalid results. 

NORMAL mode is initiated by deasserting the MC# signals. The direction of data transfer 
(input or output) is indicated by the W/R# signal. 

5.1.2 PGFLASH Access Modes (PG Modes) 

There are two PG modes, as described in the following sections. In these modes, the host can 
write or read the PGFLASH control registers through the microcontroller. This allows control 
reading, programming, and erasing of the PGFLASH in order to upload or download the 
microcontroller program. In these modes, the internal logic (except PGFLASH contents and 
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registers) is reset. The external bus interface is not reset. The reset condition is maintained 
when NORMAL mode is re-entered from PG mode. 

5.1.2.1  PGFLASH Program Mode 

In this mode, the microcontroller is halted while its PGFLASH memory is written by the host. 
This mode is initiated by asserting MC# and driving W/R# high (using Vpp) to indicate a write 
operation. After MC# is subsequently deasserted, the microcontroller remains in the reset 
state until a command is written to the CMR register that clears bit 15 ofthat register to zero. 

The A[0:15] pins are used to address the memory locations into which instructions are to be 
written. Addresses drive the internal Program Address Bus (PAbus) and are latched into a 
program address register associated with the PGFLASH. Addresses are latched coincident 
with writing of the instruction into a second program address register. Once an address has 
been latched, a series of control words must be written to the two 16-bit control registers 
associated with the PGFLASH. The required sequence is described in the PGFLASH 
programming section of Chapter 5 in the NHOOO Recognition Accelerator User's Guide. 

Only 16 bits (D[0:15]) are used for data transfer, since the PDbus is 16-bits wide. Data on 
D[16:63] should be set to 1 on input. 

5.12.2 PGFLASH Read Mode 

In this mode, the microcontroller is halted while its PGFLASH memory is read by the host. 
The internal Program Data Bus (PDbus) drives the external data pins, D[0:63]. 

This mode is initiated by asserting MC# and driving W/R# low to indicate a read operation. As 
in the case of load operation, only 16 bits (D[0:15]) are used for data transfer. 

5.1.3   Reset Mode (RESET) 

Bit 15 of the CMR register is the Accelerator's reset latch. Any of the following conditions can 
reset all or parts of the Accelerator: 

• The RESET* signal is asserted at the rising edge of CLK. 
• The MC# signal is asserted at the rising edge of CLK. 
• A value of 1 is written to bit 15 of the CMR register (by the host or the microcontroller). 

The first and third condition above reset the entire Accelerator, which includes the external bus 
interface, PGFLASH, and other internal logic. The second condition alone resets the internal 
logic, except the contents of PA, PGFLASH and the PGFLASH registers. 

When the Accelerator is reset, all precharging and most latching is suspended. An active 
clock is still distributed to most blocks, but the blocks become idle. All state machines are 
reinitialized. There are two exceptions to these reset actions: 
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• The external bus interface is only forced into its initialization state when the RESET* 
signal is asserted on a rising edge of CLK. 

• The PGFLASH is not reset if the MC# signal is asserted. 

The first exception allows the external bus interface to function, so that the host can write a 
0 into bit 15 of the CMR register. The second exception enables the PGFLASH to be 
manipulated while all other units on the Accelerator (except the external bus interface) are 
deactivated during the PG modes. 

After the Accelerator is reset, operation can only be restored by the host deasserting 
RESET* and writing a 0 to bit 15 of the CMR register. The Accelerator is put into NORMAL 
mode if MC# and RESET* are deasserted, and CS# is asserted. The microcontroller starts 
executing instructions from location 1 in the PGFLASH which is at address F001h in the 
memory space. 

5.2 Bus Cycles 

In NORMAL and PG modes, 64, 32 or 16 bits can be transferred. The Accelerator supports 
both burst and non-burst transfers. Both the host and the Accelerator can terminate a bus 
cycle, but only the host can initiate one. The timing diagrams in this section illustrate the read 
and write cycles that can be performed in the NORMAL and PG modes. 

Table 5-2 shows the signals used to control bus cycles. A cycle starts when ADS# and CS# 
are both asserted (not necessarily at the same time) by the host at a rising edge of CLK. At 
the same time, the host drives the address on A[0:15] and the W/R# signal to define a read or 
write. 

Data (whether input or output) are not transferred unless the Accelerator asserts RDY# or 
BRDY#. If the Accelerator asserts RDY#, the cycle is terminated by the Accelerator after a 
single bus-width of data is transferred. If the Accelerator asserts BRDY# during the first 
transfer, additional transfers can be made in that cycle. The BLAST* signal, when asserted by 
the host at the beginning of a cycle, indicates either a single-bus-width (non-burst) cycle or the 
last data transfer of a burst cycle. If the Accelerator asserts BRDY* and the host asserts 
BLAST* at the same time, the host is terminating the cycle. If the Accelerator asserts neither 
RDY* nor BRDY*, data are not transferred. If the Accelerator asserts BERR#, data are not 
transferred and the cycle is terminated. The BLAST* signal always indicates the last transfer 
of any cycle (burst or non-burst); it is not required for a burst transfer, although when asserted 
by the host it always indicates the end of a cycle from the hosts viewpoint. 

11/3/95 72 



NMOOO Technical Specification 

Table 5-2. Cycle-Definition and Control Signals for Normal and PG Modes 

Pins Driven By Description 

ADS# Host Address Strobe. When asserted by the host on a rising edge of CLK, 
this signal causes the Accelerator to sample CS# and the address on 
A[0:15], thereby initiating a bus cycle. 

CS# Host Chip Select. Asserted by the host to indicate that the Accelerator is 
being addressed. The signal must be held asserted throughout the bus 
cycle. The signal is used to select one of potentially multiple NMOOO 
Accelerators. 

BLAST* Host Burst Last. When asserted by the host, this signal indicates the last 
data transfer in the current cycle, whether burst or non-burst. For burst 
cycles, the host holds BLAST* negated until the last data transfer of the 
cycle, during which it asserts BLAST*. For non-burst cycles, the host 
asserts BLAST* during the first (and only) data transfer. The signal is 
compatible with the x86 BLAST* architecture; however, only a maximum 
of 64 bits can be burst to or from the Nil 000 Accelerator. 

W/R# Host Write or Read. Driven by the host on the same rising clock edge as 
ADS*, CS#, and BLAST*, to indicate that the current bus cycle is a write 
(high) or read (low). 

RDY# Nil 000 
Accelerator 

Non-Burst Ready. When asserted by the Accelerator, this signal 
indicates that the data on D[0:63] is valid (for output) or accepted (for 
input) and that it is the last data transfer in the current bus cycle. The 
signal terminates the bus cycle. The Accelerator cannot pull this signal 
high. 

BRDY# NMOOO 
Accelerator 

Burst Ready. When asserted by the Accelerator, this signal indicates 
that the data on D[0:63] is valid (for output) or accepted (for input) and 
that more data may be transferred in the current burst bus cycle. The 
signal does not terminate the current bus cycle. The Accelerator cannot 
pull this signal high. 

BERR# NMOOO 
Accelerator 

Bus Error. When asserted by the Accelerator, this signal indicates that 
illegal bus-definition conditions have occurred. For example, the host may 
attempt to write to the input buffer when the Accelerator is not in an 
appropriate mode or when the buffer is full, or the host may attempt to 
access the output buffer before data is available. The signal also 
terminates the current bus cycle. The Accelerator cannot pull this signal 
high. 

64/32# Host 64-Bit or 32-Bit Data Bus. Driven by the host to select 64-b'rt (high) or 
32-bit (low) operation on the D[0:63] bus. Data alignment is described in 
Section 4.1. 

MC* Host Microcontroller. Asserted by the host on the same rising clock edge as 
ADS* and CS# to read or write the Accelerator's microcontroller-program 
memory (PGFLASH). 
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5.2.1   l/O-Register Read or Write 

The I/O registers can be read or written by the host in single (non-burst) cycles when the 
Accelerator is operating in the NORMAL access mode. Figure 5-2 shows an l/O-register read 
cycle followed by an l/O-register write cycle. The addresses of the I/O registers are given in 
the "Architecture" chapter. 

A read cycle begins when the host asserts ADS# and CS# and the Accelerator samples them 
at the rising edge of CLK. At the same time, the host drives the address, A[0:15], and it drives 
W/R# low. The host also asserts BLAST# at the beginning of the cycle to indicate a single or 
non-burst data transfer, i.e., the first data transfer is the last transfer expected in the cycle. 
When the Accelerator responds by placing valid data on D[0:31], the Accelerator asserts 
RDY# indicating that the host should sample the data. 

A write cycle, shown in the right side of Figure 5-2, follows essentially the same protocol as 
the read cycle except that the host drives W/R# high and it drives the data on D[0:31] at the 
beginning of the cycle, at the same time that it drives ADS#, CS#, and the address. The 
Accelerator terminates the cycle in the same manner as it terminates a read- bv assertina 
RDY#. M 
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Figure 5-2. I/O Register Read or Write By Host 
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5.2.2  PGFLASH Read or Write 

The Program Flash Memory (PGFLASH) can be read or written by the host in single (non- 
burst) cycles when the Accelerator is operating in one of the two PG access modes. Figure 
5-3 shows a PGFLASH read cycle followed by a PGFLASH write cycle. The PGFLASH is 
accessed at addresses FOOOh through FFFFh. In a read cycle, the host begins by driving 
ADS#, CS#, the address, W/R#, and BLAST*. Three clocks later, the Accelerator places the 
data on D[0:31] and asserts RDY#. In a write cycle, the Accelerator samples the data and 
asserts RDY# two clocks after the host begins the cycle. 

The protocol for reading and writing PGFLASH is the same as for reading and writing an I/O 
register; however, the timing of reads in the PGFLASH is three clocks longer than for an I/O 
register, and the timing of writes is one clock shorter. 
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Figure 5-3. PGFLASH Read or Write By Host 

5.2.3  IRANI Non-burst Write 

The IRAM can be written by the host in single (non-burst) or burst cycles while the Accelerator 
is operating in the NORMAL access mode. IRAM is accessible at address 2000h. When 
writing input vectors into IRAM for classification, the BERR# signal will be asserted if the host 
attempts to write more data than specified in the DIM register. See the "Architecture" chapter 
for details. 
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Figure 5-4 shows two sequential single (non-burst) writes to the IRAM. The timing is identical 
for both writes, and is also identical to the timing for PGFLASH writes: two clocks after the 
host starts the cycle, the Accelerator samples the data and asserts RDY#to terminate it. Burst 
writes to the IRAM are shown in Figure 5-6. 
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Figure 5-4. IRAM Non-burst Write By Host 

5.2.4  ORAM Non-burst Read 

The ORAM can be read by the host in single or burst cycles while the Accelerator is operating 
in the NORMAL access mode. ORAM external output port is accessed at address 2800h. 

Figure 5-5 shows two types of single (non-burst) ORAM reads. The first read occurs when the 
ORAM has just been filled with classification results. The cycle takes five clocks to complete 
This is two clocks longer than a read that occurs when the ORAM has been previously 
accessed (i.e., not just filled with classification results). Burst reads of the ORAM are shown 
below in Figures 5-7 and 5-8. 
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Figure 5-5. ORAM Non-burst Read By Host 

5.2.5  IRANI Burst Write 

Figure 5-4 showed a single write to the IRAM. Figure 5-6, below, shows a four-transfer burst 
write to the IRAM. In burst cycles, the Accelerator asserts BRDY# instead of RDY# to indicate 
each successful data transfer in the multi-transfer sequence. Unlike RDY#, BRDY# does not 
terminate the cycle. 

The host begins the cycle with BLAST* deasserted. It keeps BLAST* deasserted through the 
third transfer, indicating to the Accelerator that these transfers are not expected to be the last 
transfer of the cycle (i.e., that this will be a burst cycle). In response, the Accelerator holds 
BRDY* asserted from the first data transfer through the last transfer (although RDY* can be 
substituted for BRDY* in the last transfer). The end of the cycle occurs when the host asserts 
BLAST* while the Accelerator asserts either BRDY* or RDY* 
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Figure 5-6. IRAM Burst Write By Host 

5.2.6  ORAM Burst Read 

Figure 5-5 previously showed the two types of single (non-burst) reads to the ORAM: the first 
type applies to the ORAM immediately after is has been filled with classification-results data, 
and the second type applies to the ORAM when it is filled prior to the read access and waiting 
idly. Figures 5-7 and 5-8, below, show four-transfer burst reads of the ORAM under the same 
respective situations. As in burst cycles that access IRAM, the Accelerator asserts BRDY# 
instead of RDY# to indicate each successful data transfer in the multi-transfer 
Unlike RDY#, BRDY# does not terminate the cycle. 

sequence. 

Figure 5-7 shows a burst read to a newly filled ORAM. The host begins the cycle with BLAST* 
deasserted. It keeps BLAST* deasserted through the third transfer, indicating to the 
Accelerator that these transfers are not expected to be the last transfer of the cycle (i.e., that 
this will be a burst cycle). In response, the Accelerator holds BRDY# asserted from the first 
data transfer through the last transfer (although RDY# can be substituted for BRDY# in the 
last transfer). The end of the cycle occurs eight clocks later when the host asserts BLAST* 
while the Accelerator asserts either BRDY# or RDY#. 

Figure 5-8 shows a burst read to a partially read ORAM. The same protocol is used as in 
Figure 5-7 (except in this case, RDY# instead of BRDY# is asserted by the Accelerator to 
terminate the cycle). However, the cycle is shorter by two clocks than for accesses to a newly 
filled ORAM. 
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Figure 5-7. ORAM Burst Read By Host 

5.2.7   Reset 

All or parts of the Nil 000 Accelerator can be reset by the host asserting RESET* or MC#, or 
by the host writing a 1 to bit 15 of the CMR register. Figure 5-9 shows the cycle, once reset, 
the Accelerator can only be brought back to normal operation by the host writing a 0 to bit 15 
of the CMR register (not shown in Figure 5-9), provided that MC* is not asserted and RESET* 
is deasserted. 

The top half of Figure 5-9 shows that, when RESET* is asserted while MC* is deasserted at 
the rising edge of CLK, the entire Accelerator is reset, which includes the external bus 
interface, PGFLASH, and other internal logic. When RESET* is deasserted, all units remain 
reset except the external bus interface, since this interface is reset only when RESET* is 
asserted. When MC* is asserted, PGFLASH is no longer in reset condition, but the other 
internal logic remains reset. When MC* is deasserted, PGFLASH re-enters the reset 
condition. 

The bottom half of Figure 5-9 shows that when MC* is asserted while RESET* is deasserted 
at the rising edge of CLK, only the internal logic is reset, not including PGFLASH. The external 
bus interface is reset when RESET* is held low. When MC* is deasserted, PGFLASH enters 
the reset condition. Other internal logic remains reset throughout the cycle. 
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6. Electrical Characteristics 

6.1 Absolute Maximum Ratings 
Operating Temperature (ambient) 0°Cto +70°C 
Storage Temperature -55°C to+140°C 
Voltage on Inputs and Outputs with Respect to Vss -0.5V to +6.5V 
Vcc, V« Supply Voltages with Respect to Vss -0.5Vto+6.5V 
VpP Supply Voltage with Respect to Vss -0.5V to +13.5V 

NOTICE: Stresses above those listed under Absolute Maximum Ratings may cause 
permanent damage to the device. This is a stress rating only and functional operation of the 
device at these or any conditions above those indicated in the operational sections of this 
specification is not implied. Exposure to Absolute Maximum Rating conditions for extended 
periods may affect device stability. All specifications contained within the following tables are 
subject to change. 

6.2 D.C. Characteristics 

Symbol Parameter Mln Max Notes 

Vil Input LOW Voltage -0.3V 0.8V tested at 1 MHz 

Vih Input HIGH Voltage 2.0V Vcc+0.3V tested at 1 MHz 

Vol Output LOW Voltage n/s 0.45V tested @ 1 MHz, 4mA 

Voh Output HIGH Voltage 2.4V n/s tested @ 1 MHz, 4 mA 

Ice Supply Current n/s 700mA Vcc = 5.25 V, 
CLK = 25 MHz 

loh Output Current HIGH Voltage n/s 4 mA 

lol Output Current LOW Voltage n/s 4mA 

Hi Input Leakage Current n/s +/-10MA 

llo Output Leakage Current n/s +/-10 nA 

Cin Input Capacitance n/s 15 pF exc. CLK 

Co Output Capacitance n/s 15 pF 

Cclk Clock Capacitance n/s 20 pF 
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Symbol Parameter Min Max Notes 

lpP1 Program Current n/s 30 mA Vpp = Vpph, 
Programming in 
progress 

Ipp2 Erase Current n/s 30 mA Vpp = Vpp(max), 
Erasure in progress 

Ipps Vpp Leakage Current n/s +/-10mA Vpp = Vpp(min), 
No programming or 
erase in progress 

Vcc Vcc Voltage 4.75V 5.25V 

Vex Vex Voltage 4.75V 5.25V 

Vpp Vpp Voltage During P/E 
Operations 

11.4V 12.6V 

Tpap Pulse Width to Program PA 10ns 50ns 

Nppa Number of Pulses to Program 
PA 

1 200 

Tpae Pulse Width to Erase PA 1ms 5 ms 

Nepa Number of Pulses to Erase PA 1 2000 

Tpgp Pulse Width to Program 
PGFLASH 

10(iS 50jis 

Nppg Number of Pulses to Program 
PGFLASH 

1 200 

Tpge Pulse Width to Erase 
PGFLASH 

2ms 10 ms 

Nepg Number of Pulses to Erase 
PGFLASH 

1 2000 

NCpa Number of Program/Erase 
Cycles for PA 

1000 n/a 

NCpg Number of Program/Erase 
Cycles for PGFLASH 

1000 n/a 

n/a - not applicable 
n/s - not specified 

11/3/95 82 



NilOOO Technical Specification 

6.3 A.C. Characteristics 

Operating Conditions: Vcc = = 5V ± 5%, Vex = 5V ± 5%, Ta = 0°C to 70°C , I/O Levels: 0, 3.5V. 

Pin Array Location Signal Name Load (pF) Min (ns) Max (ns) 

Q11 CLK Period   (-25) 
(-10) 

n/a 
n/a 

40 
100 

500 
500 

Q11 CLK Frequency Variation 
(cycle-to-cycle) 

n/a n/a 0.1% 

Q11 Phase Variation n/a n/a 5% 

Q11 CLK High Time n/a 13 n/s 

Q11 CLK Low Time n/a 13 n/s 

Q11 CLK Rise Time n/a n/s 2 

Q11 CLK Fall Time n/a n/s 2 

Various A[0:15] Setup Time n/a 15 n/a 

Various A[0:15] Hold Time n/a 6 n/a 

Various D[0:31] Setup Time n/a 15 n/a 

Various D[0:31] Hold Time n/a 6 n/a 

Various D[32:63] Setup Time n/a 15 n/a 

Various D[32:63] Hold Time n/a 6 n/a 

A12 Chip Reset Time n/a 5 clocks n/a 

A13 MCINT# Setup Time n/a 15 n/a 

A13 MCINT* Hold Time n/a 6 n/a 

A14 ERROR* Setup Time n/a 15 n/a 

A14 ERROR# Hold Time n/a 20 n/a 

A14 ERROR* Delay Time n/a 10 n/a 

B11 MULTCHIP* Setup Time n/a 13 n/a 

B11 MULTCHIP* Hold Time n/a 20 n/a 

C11 MC# Setup Time n/a 15 n/a 

C11 MC# Hold Time n/a 5 clocks n/a 
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Pin Array Location Signal Name Load (pF) Min (ns) Max (ns) 

C13 IACK# Setup Time n/a 15 n/a 

C13 LACK* Hold Time n/a 6 n/a 

E15 BLAST* Setup Time n/a 15 n/a 

E15 BLAST* Hold Time n/a 6 n/a 

F15 W/R# Setup Time n/a 15 n/a 

F15 W/R# Hold Time n/a 6 n/a 

G15 ADS# Setup Time n/a 15 n/a 

G15 ADS# Hold Time n/a 6 n/a 

H15 CS# Setup Time n/a 15 n/a 

H15 CS# Hold Time n/a 5 clocks n/a 

Q12 RDY# Clk -> Output 30 n/s 12 

R12 BRDY# Clk -> Output 30 n/s 12 

S12 BERR# Clk -> Output 30 n/s 12 

S13 SRQ# Clk -> Output 30 n/s 12 

Dn D0-D63 Clk -> Output 30 n/s 12 

n/a - not applicable 
n/s - not specified 
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Figure 6-1. A.C. Waveforms 

Table 6.1 Legend for A.C. Waveforms 

Symbol Meaning 

Tc CLK Cycle Time 

Tch CLK High Time 

Tel CLK Low Time 

Tr CLK Rise Time 

Tf CLK Fall Time 

Ts INPUT Setup Time 

Th INPUT Hold Time 

To OUTPUT Delay Time 
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7. Mechanical and Thermal Characteristics 

1.65 
Ref. 

r 

PinC3 

1  C 

-D- 

-P • 

®®®®®®©®®©©®©©©©® 
®®©©®©©©©®©©®©@@© 
®®©©©®©®®®©@©©©©© 
® ® ® 

®®®©®®®©®®@( 
®®®®®®®®@©®©©©i 
S®©©©®®®®©®©®®©^ 

-Ref. 

r 
2.29 
1.52 

45*Chamfer 
(Index Corner) 

Swagged Pin 

(4 PL) 

Seating 

Plane  " 

Base Plane 

Seating 

Plane 

B (All Pins) 

i  i 
Swagged 

Pin 
Detail 

Figure 7-1. Package Diagram 
Nil 000-086 

Table 7.1 Package Dimensions 

Ceramic Pin Grid Array Package 
Symbol Millimeters Inches 

Min Max Notes Min Max Notes 
A 3.56 4.57 0.140 0.180 
A, 0.64 1.14 Solid Lid 0.025 0.045 Solid Lid 
A2 2.79 3.56 Solid Lid 0.110 0.140 Solid Lid 
A3 1.14 1.40 0.045 0.055 
B 0.43 0.51 0.017 0.020 
D 44.07 44.83 1.735 1.765 
Di 40.51 40.77 1.595 1.605 
Ei 2.29 2.79 0.090 0.110 
L 2.54 3.30 0.100 0.130 

N (pins) 168 168 
Si 1.52 2.54 0.060 0.110 
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The Nil000 Accelerator is specified for operation when the case temperature, Tc, is within the 
range of 0°C-85°C. Tc may be measured in any environment to determine whether the 
Accelerator is within this range, but the measurement should be made at the center of the top 
surface on the opposite side from the pins. 

Given power dissipation and thermal resistance information from Table 7.2, the following 
equations can be used to related junction, case and ambient temperatures: 

Tj = Tc + P * &jc 
Ta = Tj - P * &ja 
Tc = Ta + P * [*ja &jc] 

where, 

Tj = junction temperature 
Ta = ambient temperature 
Tc = case temperature 
&jc =  junction-to-case thermal resistance 
9jz = junction-to-ambient thermal resistance 
P = maximum power consumption 

The values for 0jc and 6ja are given in Table 7-2. Note that Ta is greatly improved by 
attaching a heat sink to the package. The maximum power consumption, P, is calculated by 
using the maximum Ice at 5V as tabulated in the D.C. Characteristics section. 

Table 7.2 Thermal Resistance (°C/W) 

Qc £Ja vs. Airflow—ft/mln(m/sec) 

0 
(0) 

200 
(1.01) 

400 
(2.03) 

600 
(3.04) 

800 
(4.06) 

1000 
(5.07) 

Without Heat Sink 1.5 17 14.5 12.5 11.0 10.0 9.5 

With Heat Sink 2.0 13 8.0 6.0 5.0 4.5 4.25 

* 0.350" high unidirectional heat sink (Al allow 6063, 40 mil fin width, 155 mil center-to-center fin spacing). 
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8.   Glossary 

Bayes Rule—A statistical approach used in pattern classification when overlap exists among 
the fields of influence of prototype classes. The mathematical form of the Bayes rule is: 
P(o|x) = p(x|co) P(co) / p(x), where the a priori probability P(co) and the conditional probability 
density p(x|o) are known. In the context of the NilOOO Accelerator, m is a classification class, 
and x is an input pattern. Bayes rule shows how the input pattern x changes the a priori 
probability P(o>) to the a posterior probability P(o|x). Under this rule, input patterns are 
assigned to the class with the highest PD, P(co|x). 

City Block Distance—Also called "Manhattan Distance", or "L1 Norm" in mathematical terms, 
a measure of the distance between an input vector and a prototype vector. Absolute 
differences between corresponding components of the two vectors are summed to form this 
distance. "City Block" refers to the orthogonality in the distance computing. It is used in the 
NilOOO Recognition Accelerator to simplify the implementation. 

Class—A category into which prototypes are grouped and input patterns are classified. The 
NilOOO Recognition Accelerator supports up to 64 classes. 

Class Firing—If at least one prototype of a class fires (see prototype firing ), the class is said 
to fire. Each prototype has a class ID number to indicate the class to which it belongs. 

DCU—One of the distance calculation units. There are 512 DCUs in the NilOOO Accelerator. 

Deterministic Radial Basis Function—A radial basis function that does not overlap with an 
RBF of another class so that classifications done with it are deterministic. Compare 
Probabilistic Radial Basis Function. 

Deterministic RBF—See Deterministic Radial Basis Function. 

Dimension—The number of components in the input and prototype vectors. The NilOOO 
Recognition Accelerator supports vectors with up to 256 components (or dimensions). 

Feature Space—The complete range of possible patterns of input data. A point in a 
multidimensional feature space corresponds to an input vector. Classification defines regions 
within the feature space. The NilOOO Accelerator supports feature space of up to 256 
dimensions and combines small units of feature space into complex regions representing 
classes. 

Field of Influence—A region in the feature space associated with each prototype, 
subsequently with each class, and indicated by the value of the threshold distance. An input 
pattern is within the field of influence of a class if its city block distance to one of the prototype 
vectors in the class is less than the threshold distance ofthat prototype. 

Flash EPROM—Electrically erasable and programmable read-only memory. Unlike 
conventional EPROM which requires physical removal from the computer and UV exposure, 
erasing and programming on the flash memory may be done in-system by applying high 
electrical voltage to the memory cells. The contents of the flash memory are preserved after 
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power-down. The Nil000 Recognition Accelerator uses flash memory to store microcontroller 
program (PGFLASH) and prototype array (PA). 

GRAM—General-purpose random-access memory, used by the on-chip microcontroller of the 
Nil 000 Accelerator. 

Incremental Learning—Addition of new prototypes to the existing base and/or adjustment of 
parameters. This is the normal learning mode on the chip, assuming initialization has 
occurred, at least one prototype is stored, and some training had been done. 

Influence Field—Same as field of influence. 

IRAM—The on-chip input buffer random access memory. 

Lambda (X.)—Same as threshold radius. 

Learning—Also called training or adaptation, a process of selectively choosing a set of 
prototypical vectors from the training data and adjusting appropriate parameters associated 
with those vectors. Ideally, the prototypical vectors chosen are best indicators of output based 
on input. The parameters associated with each prototypical vector include the threshold 
distance for RCE, the amplitude constant and decay constant of the exponential distribution 
function for PRCE. 

Manhattan Distance—See city block distance. 

MC—The on-chip microcontroller. 

Minimum Threshold Distance—A prescribed global constant, intended to limit the number of 
prototypes selected in the learning process by forcing each prototype to have a minimum 
region of influence in the pattern space. 

MU—The on-chip mathematical unit. 

MURAM—The on-chip mathematical unit RAM. There are two MURAMs. 

Neural Network Classifier—An implementation of an algorithm that accepts input patterns 
and outputs classification information. The Nil000 Recognition Accelerator is such a classifier 
that uses the RCE and/or PRCE algorithms. 

Neuron—In biology, a cell in the brain that produces an output signal in response to multiple 
input signals. In the Nil000 Recognition Accelerator, it is a structure that computes the city 
block distance between an input vector and a pre-stored prototype vector. For RCE, this 
distance is then compared with the radial threshold distance associated with the prototype 
vector to produce a binary-valued output. For PRCE, this distance is used to compute a 
floating-point number which enters the PDF calculation. 

ORAM—The on-chip output buffer random access memory. 

PA—The on-chip prototype array. 
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PADCU—PA and DCUs. 

Parzen-Windows—A technique to compute probability density functions. It assumes that 
within a small region of the feature space, the density function does not vary appreciably, and 
the probability that a pattern of class C falls within the region is simply the number of vectors 
in class C in the region, Kc, divided by the total number of vectors in the feature space. In this 
technique, Kc = S <j>(pO - p(k)), where the sum is over all patterns p(k) in class C, and pO is the 
center of the region. The window function ftf - f(k)) = 1, if |f - f(k)| is less than a threshold 
value, and 0 otherwise. The threshold value defines the region of estimation. 

Pattern—An input vector to be classified. The Nil000 Recognition Accelerator can accept 
input vectors with up to 256 dimensions, each of which has a 5-bit resolution. 

PDF—See probability density function. 

PGFLASH—Flash memory used in the Nil000 Accelerator to store the program for the 
microcontroller. Default microcontroller program supports RCE or PRCE, and PNN algorithm. 
PGFLASH is erasable and programmable. See Flash EPROM. 

PNN—See probabilistic neural network. 

PPRAM—The on-chip prototype parameter random-access memory. There are three 
PPRAMs to store, for each prototype vector, its class ID, decay constant, receptive field 
radius, count, and flags. 

PRCE—See probabilistic Restricted Coulomb Energy. 

Probabilistic Neural Network—A pattern-recognition algorithm that classifies patterns using 
probability distribution and Sayes rule. All training patterns are stored and used to estimate 
the probability density functions. Learning is rapid (one pass through the training set) and the 
continuous-valued (Gaussian) estimators perform spatial averaging, resulting in improved 
PDF estimates in regions of low sample density. A drawback is that memory usage is 
inefficient so that large data sets require large networks. 

Probabilistic Radial Basis Function—A radial basis function that overlaps with an RBF of 
another class so that classifications done with it are probabilistic. Compare Deterministic 
Radial Basis Function. 

Probabilistic RBF—See Probabilistic Radial Basis Function. 

Probabilistic Restricted Coulomb Energy—A pattern-recognition algorithm that combines 
RCE and PDF estimation. The Nil000 Accelerator computes simultaneously the RCE (firing 
class IDs) and PRCE (PDFs) results, and the user can select to output either or both. The 
classification decision is made using Sayes rule in the case of multiple firing classes. 

Probability Density Function—A specification of the dependence of prototype-classes 
distribution on an input pattern, used with Bayes rule to determine the class to which the input 
pattern belongs. Functional forms can vary, and are chosen to be the sum of decayinq 
exponentials in the Nil000 Accelerator. 
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Prototype—A stored vector that serves to represent the typical features of the patterns to be 
classified. The Nil000 Recognition Accelerator supports up to 1024 such vectors of 256 
dimensions each, and 8000 vectors of lower dimensions. These vectors are selected in the 
learning process, and are grouped into 64 classes. 

Prototype Firing—An indication of a match between an input vector and a stored prototype. 
Firing occurs when the input vector is within the influence field of the prototype. 

Radial Basis Function—A radially symmetric function that has a maximum at some point in 
its input space and that falls off to zero rapidly at large distances from that point. The region 
around the symmetry point can be thought of as an influence (or receptive) field since input 
vectors which fall near this point will result in non-zero response from the RBF logic. The RBF 
used in the NMOOO Accelerator is a decaying exponential function. 

RBF—See radial basis function. 

RCE—See Restricted Coulomb Energy. 

Restricted Coulomb Energy—A pattern-recognition algorithm that is supported by the 
Ni1000 Accelerator. Training is supervised and selective, in the sense that not all training 
vectors are committed as prototypes. Several passes of the entire training set may be 
required. Classification is done using a set of RBFs for the prototype vectors. The advantage 
is that RCE may not require as large a network as PA/A/. 

Threshold Radius—A parameter associated with each prototype that defines the prototype's 
field of influence. It is determined during the learning process. When the cäy block distance 
of an input vector to the prototype is less than the threshold radius, a match is found and the 
prototype fires. See also field of influence, and minimum threshold distance. 
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PREFACE 

This manual provides detailed documentation of the Ni1000 Recognition Accelerator chip and 
its hardware and software interfaces. The manual is written for system designers who have 
experience in pattern recognition and microprocessors. 

Terminology and Notation 

• Accelerator or Recognition Accelerator—-The Nil000 Recognition Accelerator chip 
described in this book. 

• Active-Low Signal Names—Signal whose names are followed by the symbol, #, indicate 
active-low signals that are asserted at low voltage and negated at high voltage. 

• Buses—The notation SIGNAL[m:n] represents bits m through n of a bus. 
• Fields—The notation FIELD[m] represents bit m of a field, and the notation FIELD[n:m] 

represents bits n through m of a field. 
• Bit Values—Bits can be set to 1 or cleared to 0. 
• Reserved Bits and Signals—When bits are marked as undefined or reserved, it is 

essential for compatibility with future processors that software treat these bits as having a 
future, though unknown, effect. Programs that read registers with undefined bits must 
mask off those values. Programs that write to registers with undefined bits must first read 
the register and then change only the desired defined bits before writing back to the 
register. 

• Data Quantities—A wotd is 16 bits (two bytes), a dword or doubleword is 32 bits (four 
bytes), and a qword or quadword is 64 bits (eight bytes). 

• Data Abbreviations—The following notation is used for bits and bytes: 
Bits b 
Bytes B 
Kilo (103)  K 
Mega(106) M 
Giga(109) G 

• Hexadecimal Numbers—Hexadecimal numbers are followed by an h, unless the context 
makes this notation unnecessary. 

• Set Inclusion—A square bracket, [ or ], indicates that the adjacent point is included in the 
set being defined. A parenthesis, ( or), indicates that the adjacent point is not included in 
the set. 

Little-Endian Convention 

The 80160NC Recognition Accelerator is a little endian machine. This means that the bytes 
within a word are numbered starting from the least significant byte. Pictures of data structures 
in memory show the smallest addresses at the bottom and the highest addresses at the top. 
Bit positions are numbered from right to left. Figure i-1 illustrates these conventions using a 
32-bit register as an example. The numerical value represented by a bit that is set (1) is equal 
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to two raised to the power of the bit position. The bit notation in a 32-bit register corresponds 
directly to the bit notation on a 32-bit data bus when data items are aligned to 32-bit 
boundaries in memory. 

Byte order in a 32-bit register: 

31 23 

Byte 3 Byte 2 

Byte order in memory: 

15 7 

Figure i-1. Bit and Byte Order 

15 

Bytel ByteO 

Byte 9 Byte 8 

Byte 7 Byte 6 

Byte 5 Byte 4 

Byte 3 Byte 2 

Bytel ByteO 

Bit positions are numbered 
from right to left. 
Memory addresses are 
numbered from bottom to top. 
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1.      INTRODUCTION 

The Nil000 Recognition Accelerator chip provides a high-performance solution for pattern 
recognition problems. The Nil000 will be available in two versions: the Nil000-25 and the 
Nil000-10. Except as noted, all references to processing rates refer to the Nil000-25. The 
Nil 000-10 is rated at approximately 40% of the speed of the Nil000-25. The Nil 000 has the 
following features: 

Neural Network Pattern Recognition Accelerator 
Fully Digital Design 
16-bit, On-Chip Microcontroller with 4K-Word FLASH Program Memory 
32-Bit or 64-Bit Host Interface 
RCE, PRCE and PNN are Learning and Classification Supported on-chip 
Programmable to Support other RBF Paradigms 
Supports 64-Class Problems 
Outputs Both Class and Probability Data 
222-Feature Input Vectors with 5-Bit Resolution per Feature 
1024 Prototype Locations in 1.3-Mbit On-Chip FLASH EEPROM (1000 Prototypes usable) 
12.4 Billion Operations per Second at 25 MHz 
Supports Multi-chip Operations 
168-Pin PGA Package 

The Nil 000 Accelerator supports classification of over 10,000 patterns per second, with real- 
time adaptation. The chip is compatible with commonly used Radial Basis Function (RBF) 
paradigms, including Restricted Coulomb Energy (RCE), Probabilistic RCE (PRCE), 
Probabilistic Neural Networks (PNN) and other algorithms. The flexible, on-chip 
microcontroller with its 4K x 16-bit non-volatile microcode memory, also permits 
implementation of custom algorithms. 

The Accelerator accepts input vectors with a maximum of 222 features, each with 32 levels of 
resolution, and produces up to 64 class IDs and/or probabilities. High-speed parallel 
processing units compute the city-block distance between an input vector and up to 1000 
stored prototypical examples. The Accelerator's high speed is suitable for computationally 
intensive applications like optical character recognition, fingerprint identification and industrial 
inspection. 

Pattern recognition is the process of sorting input data into categories or classes that are 
significant to the user. The prototypical values of differentiating traits (features) of each class 
must first be loaded into the chip's memory. The contents of the chip's memory can be 
developed manually or extracted from examples of data typical to the problem, using a 
learning algorithm. Feature sets are problem-specific and may consist partially or completely 
of stored data, such as historical records, or of direct sensor inputs. Once learning is 
complete, the system is ready to classify input data. The Nil 000 Recognition Accelerator 
supports incremental learning in the field, which may be necessary to further adapt the 
recognition system to its environment. 

1-1 11/6/95 
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A high-level diagram of the Nil 000 Recognition Accelerator architecture appears in Figure 1-1. 
The on-chip, custom, 16-bit microcontroller has separate program and data memories i e a 
Harvard architecture. The 4Kx 16-bit non-volatile FLASH EPROM program memory can hold 
learning algorithms, chip maintenance routines, and other software required by the 
application. A general-purpose 256 x 16-bit RAM is also available to the microcontroller. 

—7*- 
32/64 

Bus 
Interface 

Internal Bus 

Microcontroller 

j  Classifier 

 — — — — — — — __ j 

Nil 0OO-OO1 

Figure 1-1. NMOOO Recognition Accelerator Block Diagram 

The microcontroller can enable an automatic classification mode in which a series of logic 
blocks arranged as a pipeline process data and output the results to the host. The 
classification pipeline consists of input buffers, distance calculation units, a large FLASH 
prototype array that stores the results from the learning process, a mathematical unit and its 
output memories, and output buffer. At 25 MHz, the pipeline can classify over 10,000 input 
vectors per second, in which each input vector has up to 222 features with 5-bit resolution for 
each feature. The performance is made possible by the NHOOO parallel architecture which 
can execute over 12 billion operations per second. A typical Von Neumann machine would 
need to execute more than 40 billion instructions per second to approach the processing rate 
achieved by the NHOOO Recognition Accelerator. 

In most applications, the Accelerator will reside on a bus that is shared with a host CPU and 
perhaps other NHOOO Accelerators, as shown in Figure 1-2. The Accelerator will typically be a 
slave device on the host bus and will not initiate transactions on the host bus. Both the host 
and the on-chip microcontroller have the ability to interrupt each other. 

Figure 1-2 shows a local host CPU on an add-in card for personal computers and 
workstations. The CPU manages the flow of data through the Accelerator(s). The CPU may 
also have other functions, such as preprocessing data, interpreting classification results or 
coordinating the operation of multiple chips. Other implementations may rely on the CPU of 
the system board for these functions. 
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Interface 
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Figure 1-2. Typical Multichip Add-In Board 

Overview of Major Changes in the NilOOO Users' Guide at Rev 2.0. 
1. The addition of NM000-25 specifications and discontinuation of the Ni1000-33. 
2. Reduction in the number of input vector features to 222 on all versions of the NMOOO and 

the use of padding in input vectors. 
3. Updated classification rate specifications. 
4. Limitations on the use of address relocation. 
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PRINCIPLES OF OPERATION 

The Nil000 Recognition Accelerator is optimized for use in systems that require fast 
classification capabilities. Classification is the process of associating input data with 
categories or classes. In an optical character recognition application, for example, 
classification would consist of identifying the characters represented by data scanned off an 
image sensor. The input data would be patterns of on and off pixels from the scanner and 
output could be ASCII character codes corresponding to the scanned images. 

A neural network based recognition system is trained to perform the required classification. It 
stores what it has learned in a memory. Various learning algorithms can be employed to 
produce a neural network memory. In general, the algorithms are provided with a sample of 
inputs typical to the problem, called the training set, through which the neural network learns 
the differences among the classes based on their characteristics. Of course, the training must 
have each input pattern (or vector) labeled with the correct class. 

Learning is usually a phase of product development only. Once trained, the neural network is 
usually placed into classification mode, in which it performs recognition operations based on 
what it has learned. In most cases, the neural network memory remains unchanged. 
However, the Ni1000 Recognition Accelerator provides on-chip learning, allowing it to be used 
in systems that require retraining in the field. 

2.1.     Pattern Recognition 

To illustrate the recognition process, consider a hypothetical industrial inspection task of 
separating nuts from bolts out of a stream of hardware moving on a conveyor past a set of 
sensors. The task of the recognition system developer is to devise a system that takes data 
from the sensors and assigns it a class, e.g., nut or bolt. A system that can accomplish the 
task appears in Figure 2-1. Before entering the classifier, data output by the sensors may 
need to pass through a pre-processor that extracts features, such as the weight, size, shape, 
or aspect ratio of each piece of hardware. Each property is then a component of the feature 
vector. For example, the size is one feature in the feature vector; shape is another. The 
classification engine processes the vector and completes the recognition by making a sorting 
decision. 

Components of feature vectors tend to have random individual values. All bolts do not have 
the same weight, but their weight does have both upper and lower limits. Weighing a 
representative sample of bolts and charting the results to show the weight variation among 
bolts produces a Probability Density Function (PDF). 

In our example, nuts are generally lighter than bolts. The two hypothetical PDF graphs appear 
on the same axes in Figure 2-2. Using Bayes Rule, the system sorts the parts into the class 
with the higher PDF value. In Figure 2-2, pieces with weights below point C are likely to be 
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nuts. Those heavier than C are probably bolts. Since virtually no bolts weigh less than B and 
no nuts weigh more than C, on the [A, B] and [C, D] intervals the decision is fairly simple. 

i Pre-Processor 

Decision 
Classifier 

Bolts 

Nil 000-003 

Figure 2-1. Hypothetical Pattern Recognition System 

However, on [B, C] both choices are possible, and the system picks the one with the higher 
probability density. If the input is outside the interval [A, D], it is something unexpected and 
the system classifies it as neither a bolt nor a nut. The system thus exhibits novelty detection 
capability, known as generalization. 

Additional features provide additional information to the classifier. The NHOOO Recognition 
Accelerator can handle input vectors with up to 222 features. 

11/6/95 2-2 
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Figure 2-2. PDFs For Nut and Bolt Weights 
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Figure 2-3. RBF Examples 

Input vectors describe points in a multidimensional feature space, which is the complete range 
of possible patterns of input data. In the example of the nut and bolt sorter, the axes of the 
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feature space are the inputs from the sensors; they may include size, color, weight and shape 
of each piece of hardware. Features belonging to each class tend to cluster into regions just 
as nuts in the example have similar weights. The learning process approximates the locations 
of the regions in feature space using Radial Basis Functions (RBF). Three examples of RBFs 
appear in Figure 2-3. An input close to the center of an RBF elicits a large response Inputs far 
from the center produce insignificant responses. Figure 2-4 illustrates a two dimensional class 
region approximated using circular fields of influence centered on stored examples. 

The classification process maps input vectors onto feature space. The classifier then outputs 
the class of the region into which the input fell. If multiple classes fire, as may occur when an 
input falls into overlapping regions, probabilistic information can help resolve ambiguities. 

Examples of radial fields of influence are common in biological systems. Neuroscientists have 
found that a ganglion cell in the retina responds only to light detected by a small, circular area 
called the cell's receptive field. The cell produces no response, or it is actually inhibited from 
producing a response if it detects light outside the area. Receptive fields of adjacent cells tile 
the retina in overlapping RBF receptive areas to cover regions in feature space. 

Figure 2-4. Approximating Feature Space with RBFs 

2.2.     Learning and Classification Algorithms 

During the learning process, the recognition system develops a memory of class-region 
approximations and probability-density-function estimates for each point in feature space The 
system studies a training set of input examples, along with their class labels, and learns to 
distinguish among the classes under the control of a learning algorithm. 

The Nil000 Recognition Accelerator's on-chip microcontroller is intended to execute the 
learning algorithm code. It facilitates incremental learning outside the factory to adapt and 
customize the chip's memory to special circumstances that arise in the field The Accelerator 
supports algorithms like Restricted Coulomb Energy (RCE) and Probabilistic RCE (PRCE) as 
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well as other radial basis function algorithms like Probabilistic Neural Networks (PNN) and 
custom algorithms. 

Alternatively, the prototypes and their parameters can be loaded into the chip from outside. 
They may be the result of learning performed off chip, or they may simply consist of data that 
can take advantage of the calculations performed by the classification pipeline. 

2.2.1.     Restricted Coulomb Energy (RCE) 

In RCE and other algorithms compatible with the Nil000 Recognition Accelerator, learning is 
a process of approximating class regions in feature space with radial basis functions. The 
algorithm selectively stores a set of prototypical inputs, called prototypes, that are obtained 
from the training data, and it assigns a field of influence to each prototype, defined by a 
threshold radius . 

Before learning begins, the designer specifies minimum and maximum radius values, rmm and 
rmax. During learning, the Accelerator computes the distance between each input vector and 
any existing prototypes. Distances are defined as the sum of the differences between each 
feature of an input vector, (u), and the corresponding feature of a stored prototype vector, (p). 
This metric, d, is called the cäy-block distance or Manhattan distance and is computed as: 

d=  2>,-/>,l (1) 
0^1^256 

The algorithm then compares the distances with each prototype's radius to determine whether 
or not the training input vector (which has an associated class) is within that prototype's field 
of influence. If the input vector does not fall within the field of influence of any prototype, the 
Accelerator stores it as a new prototype along with its class label and sets its radius to rmax-  If, 
however, the input is within the field of influence of a prototype in a class different than the one 
with which the input is tagged, the input is stored and both its radius and the prototype's 
radius are set to the distance between them. The algorithm does not store the input as a new 
prototype if it only falls within the field of influence of one or more prototype(s) in the same 
class. Instead, it increments the count for each firing prototype. Iterations through the data set 
continue until prototype storageand radius adjustments stop. 

The pseudo-code for a typical RCE or PRCE training procedure is shown below. In the 
procedure, the italicized steps are for PRCE only. All others apply to both RCE and PRCE. 
The on-chip microcode supplied with the development system performs both RCE and PRCE 
specifications during learning. 

2-5 11/6/95 
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{ // Learn RCE/PRCE 
Set rmin and rmax 

do 
{ // begin epoch 
Reset Ck's 
do 

{ // learn vector 
Input next vector and its associated class (classj). 
Compute the input vector's distance to each of the stored prototypes. 
Compare distances to corresponding prototype's lambdas and determine firings. 
Compute Dmin using the Dmin calculation procedure shown below. 
If ((no prototypes of classj exist) or (no prototypes fire)) 

store input vector with radius = Dmin 
elSefork=1 tO («higheststored 

if (Pk firing and (class of Pk = classj)) then Ck = Ck + 1 
if (Pk firing and (class of Pk != classj) and (radius of Pk != rmin)) then 

if (distance to Pk > rmin) then radius of Pk = distance to Pk 

else radius of Pk = rmin 

} 
} 

} while more input vectors are available // learn vector 
} while ((new prototypes were stored) or (any radius changed)   // end of epoch 

} // Learn RCE/PRCE 

In the above pseudo-code, Dmi„ is calculated as: 

Umin — Tmax 
For k = 1 to khighest stored 
{     if ((distance to Pk< Dmin) and (classi != class of Pk)) 

{      if (distance to Pk< rmin) 
Dmin = Tmin 

else 
Dmin = distance to Pk 

} 
} 

During classification, the algorithm computes the distances from the input vector to each of 
the prototype vectors stored during learning. If the distance to a prototype is less than the 
prototype's lambda, the input receives the prototype's class label. The result of the RCE 
classification is a union of all firing classes. Probabilistic methods like PRCE described below 
can resolve ambiguities in case of multiple firings. 

2.2.2.     Probabilistic RCE (PRCE) 

PRCE outputs the probability that an input belongs to a given class. While learning, the 
classifier stores prototypes and computes radii using the RCE algorithm. In classification, it 
computes probability density estimates throughout feature space for each class.   The Nil000 
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Accelerator performs the probabilistic calculations in parallel with the class firing calculations 
used in RCE. 

The PRCE algorithm finds its roots in Bayes Decision Theory. A Bayesian classifier computes 
an input's probability of belonging to each class by using corresponding class probability 
density functions (PDF's). In a simple two-category problem in which class A and class B are 
the possible categories, an input vector u is a member of: 

Class A when CA * fA(u) > CB*fB(u) (2a) 
or 

Class B when CA * fA(u) < CB*fB(u) (2b) 

where CA and CB are the a priori probabilities of pattern occurrence from category A and B, 
respectively. The a priori probability CA is the ratio of the number of training patterns 
belonging to class A, to the total number of training patterns, and CB = 1 - CA Functions fA 

and fB are the probability density functions for class A and class B, respectively. 

The construction of decision boundaries requires knowledge of the underlying PDF's, which 
must be determined through training. The PDF for each class may be constructed from a 
linear combination of a family of radially symmetric distribution functions, each centered on a 
prototype stored during training. Decaying exponentials shown in Figure 2-5 approximate each 
prototype's contribution to the probability density (PD) of its class: 

PDclass=   ZCj-2~kj'dj P) 
P.GClass 

where d is the Manhattan distance between the input and the prototype, k is a decay constant 
specified by the host program before initiating PRCE classification, and C, is the a priori rate 
obtained during training. C, is the number of training patterns that belong to a class that fell 
within the distance rt of the prototype ps. An example of the resultant PDFs appears Figure 2-6. 

The PRCE classification is a mapping of the input vector onto feature space, resulting in a set 
of PDs (one value for each class). The host can then select the largest PD for each vector to 
determine its class. 

J\ V    y PDF=C'2'M 

P, 

Nil 000-007 

Figure 2-5. PD Contribution of a Single Prototype 
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PDF   0.5 

Figure 2-6. Hypothetical PDs for a Two-Class Problem 
Nil 000-008 
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HARDWARE ARCHITECTURE 

The Ni1000 Recognition Accelerator consists of two main parts: a dedicated classifier engine 
and a general-purpose 16-bit microcontroller. The classifier implements the model described in 
the previous chapter, while the microcontroller code implements the on-chip learning 
algorithms and interacts with software running on the host. 

Figure 3-1 is a block diagram of the internal hardware architecture. The upper part of Figure 
3-1 shows the classifier, the middle part shows the interface to the host, and the bottom part 
shows the microcontroller. 

In an application environment, the classifier receives data from the host system through the 
bus interface, processes it, and sends the classification results back through the bus interface 
to the host. The classifier exploits both array and pipeline parallelism to perform over 10,000 
classifications per second. The parallel hardware of the Distance Calculation Units and their 
tight coupling to the Prototype Array (PA) are responsible for much of this processing power. 
The Prototype Array holds 1024 (raw prototypes) x 256 (feature values) x 5 (bits per feature), 
for a total of 1.3 million non-volatile Flash storage bits. Note that the 1024x256 physical 
array provides 1000x222 storage locations usable for classification. Additional prototype 
storage is possible using multiple Nil000 Accelerators and a higher effective input feature 
resolution is possible using two or more Nil000 features to represent each feature. 

Each of the 512 parallel Distance Calculation Units calculates a city-block distance (see 
Chapter 2) by summing the differences produced by its absolute value subtractor. The 
subtraction is performed on each feature of the input vector and the corresponding feature of 
one of the prototype vectors stored in the Prototype Array. The DCUs are multiplexed twice in 
time to achieve a sustainable processing rate of over 12 billion operations per second and a 
bandwidth of over 30 Gbps. 

The classifier's Math Unit (MU) calculates probability densities and results classes 
concurrently. It processes floating-point data and computes the exponential and other 
mathematical functions that appear in equations (1) and (3) of Chapter 2. The MU uses a 
sixstage pipeline with a resolution of 16-bits for floating-point computations (10-bit mantissa 
and 6-bit exponent). It places results into one of two static RAMs. This double-buffering 
scheme allows the Math Unit to continue processing a second vector without interrupting the 
classification pipeline. The Prototype Parameter RAMs (PPRAMs) hold parameters like the 
radius(r), smoothing factor (k), and Count(Q), described in Chapter 2. 

The bottom part of Figure 3-1 shows the microcontroller. It is a fully custom, 16-bit, Harvard- 
architecture microcontroller that supervises learning, performs chip maintenance tasks, and 
maintains communication with the host. It can also exchange interrupts with the host. The 
4k x 16-bit PGFLASH Flash memory stores the microcontroller programs. All memory devices 
are memory-mapped to the microcontroller's address space, with the exception of the the 
microcontroller's    program    memory    (PGFLASH).    Other   facilities    available   to   the 
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microcontroller include 256 words of general-purpose static RAM (GRAM) and a free-running 
32-bit timer. Classification must stop while the microcontroller accesses these memories. 

The microcontroller can enable an automatic classification mode in which a series of logic 
blocks, arranged as a pipeline, process data and output the results to the host. The 
classification pipeline consists of input buffers, distance calculation units, a large FLASH 
prototype array that stores the results from the learning process, a mathematical unit and its 
output memories, and an output buffer. At 25MHz, the pipeline can classify over 10,000 input 
vectors per second, in which each input vector has up to 222 5-bit features. The performance 
is made possible by the Ni1000 parallel architecture, which can execute over 12 billion 
operations per second at 25 MHz. A typical Von Neumann machine would need to execute 
more than 40 billion instructions per second to approach the processing rate achieved by the 
NHO00 Recognition Accelerator. 

The middle part of Figure 3-1 shows the interface to the host, which consists of input buffers 
(IRAM), an output buffer (ORAM), and sixteen I/O control registers. The external data bus can 
be either 32 or 64 bits wide and will perform single-clock burst transfers. The input stage 
buffers two full-sized vectors. The outputs can be either in IEEE standard 32-bit floating-point 
format or the internal 16-bit floating-point format. Both the host and the Accelerator's on-chip 
microcontroller can access the sixteen 16-bit I/O control registers. The registers contain 
various control parameters for the Accelerator and provide a general channel for 
communication between the microcontroller and the host. 

The middle part of Figure 3-1 shows the interface to the host, which consists of input buffers 
(IRAM), an output buffer (ORAM), and sixteen I/O control registers. The external data bus can 
be either 32 or 64 bits wide and will perform single-clock burst transfers. The input stage 
buffers two full-sized vectors. The outputs can be either in IEEE standard 32-bit floating-point 
format or the internal 16-bit floating-point format. Both the host and the Accelerator's on-chip 
microcontroller can access the sixteen 16-bit I/O control registers. The registers contain 
various control parameters for the Accelerator and provide a general channel for 
communication between the microcontroller and the host. 
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Figure 3-1. Internal-Architecture Block Diagram 

3.1.    The Classifier 

The classifier consists of the pipeline shown in Figure 3-2. While data is loaded into the 
double buffer at the input of the pipeline or read from the output of the pipeline, the classifier 
can compare a previously loaded input vector against the prototype vectors in the prototype 
array. 
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The classifier consists of the following units: 

• Input RAM (IRAM)—a double buffer consisting of two 256 x 5 memories. Each memory 
can store one input vector. The IRAM is part of the bus interface unit, which is described 
in Section 3.2. 

• Prototype Array (PA)—a flash memory that holds the prototype vectors allocated during 
learning, i.e. the coordinates of the Radial Basis Function (RBF) centers. 

. Distance Calculation Units (DCUs)—a 512-processor array that performs the distance 
calculations between an input vector and each prototype vector in the PA. 

. Prototype Parameter RAMs (PPRAMs)-a memory that holds all of the data that defines 
an RBF except its prototype vector (which is stored in the PA). This data includes the RBF 
radius, number of vectors it recognized during exposure to the training set, etc. Unlike the 
PA, the PPRAM is not flash memory; it is static RAM. Typically, it is loaded during power- 
on initialization from off chip or from a reserved section of the prototype array (PA). 

• Math Unit (MU)—a six-stage pipelined processor that implements the decay function for 
calculating probability densities. It also applies the threshold function, to decide whether 
an input vector falls within an RBF's field of influence. 

• Math Unit RAMs (MURAMs)—a set of memories that receives the class IDs that are 
classified as similar to the input vector. It also holds the accumulated probability densities 
for each class. 
Output RAM (ORAM)—a buffer that receives the classification results for a vector and 
optionally reformats the probability densities from the internal 16-bit floating-point format 
into a format compatible with the standard IEEE 32-bit floating-point format. The ORAM 
is also part of the bus interface unit, which is described in Section 3.2. 
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3.1.1.     Distance Calculation Units (DCUs) 
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Figure 3-3 shows an individual distance calculation unit (DCU) from the 512-unit array. The 
DCUs are statically associated with PA columns. Due to redundant array elements and back 
up storage allocation, as few as 500 DCUs may be used for classification at any time. The 
DCU computes the absolute value of the difference between a feature (dimension) of the input 
vector and the corresponding feature of a prototype. The DCU then accumulates that value 
into a running tally of the distance between the input vector and the prototype. Such a 
distance is calculated between the input vector and each valid (i.e. not disabled) prototype. 

The DCU accumulates a sum of the absolute differences, called city-block distances, between 
the input vector and each prototype vector in each dimension. The following equation 
expresses the city-block distance, d, between an input vector U with / dimensions and a 
prototype vector P. 

d = | u0 - p0 | + | u1 - p-, | + ... | U| - pj | 

The DCU has two accumulators and is used in a two-cycle mode, in which half of the 
prototypes in the PA are processed in one cycle, and the other half in the following cycle. 
When there are 500 prototypes or less, a one-cycle mode is used that does not require the 
second accumulator. When there are more than 500 prototypes, the two-cycle mode is used, 
with the other accumulator being used during the second cycle. Section 3.6 describes the 
timing of the DCUs and the classification pipeline. 

At the end of a classification pass through the prototype array, the values in the accumulators 
represent the city-block distance between the input vector and each valid prototype vector 
stored in the PA. They are used by the MU to perform the probability and threshold functions. 
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Figure 3-3. Distance Calculation Unit (DCU) 

3.1.2.     Prototype Array (PA) 

The PA is a flash memory holding up to 222 five-bit features for each of up to 1000 prototype 
vectors (or 8000, for problems with 26 dimensions or less) plus array management and 
network backup data. Flash memory is a form of non-volatile electrically-erasable memory. 
See Section 3.2.4 for a description of writing to the PA. 

Figure 3-4 shows a conceptual view of the PA being accessed by the DCUs. An input vector 
is presented as a stream of 5-bit integers.   These are the individual features of the input 
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vector. The 500 DCUs compare one feature of the input vector against the corresponding 
feature in up to 500 prototype vectors simultaneously. After the last prototype has been 
processed, the DCUs pass their accumulated city-block distances to the next stage of 
processing, the math unit (MU) pipeline. 

PA flash memory can only be programmed by the microcontroller. Programming PA requires 
a 12V voltage applied to the Vpp pin. 

Two address ranges in the microcontroller's address space are used to read the PA An 
address in the range from BOOOh to B3FFh is used to specify one of the 1K prototype vectors 
to read. Note that, due to redundancy and remapping, a column address and prototype 
number may not match. Another range of 256 addresses from B800h to B8FFh specifies 
which features of the selected prototype vector are to be read. Reading is a two-step process 
in which a first read specifies either the vector or the feature, and a second read specifies the 
remaining quantity. Either the vector or the feature can be specified first. Valid data is returned 
on the second read. The upper six bits of the data are undefined . The lower ten bits are the 
value of one 5-bit feature in both true and complement form. Figure 3-5 shows the alignment 
of a 5-bit feature, p[0:4]. Complemented values are indicated by a bar over their bit names. 

Figure 3-6 shows the architecture of the PA during programming. There are four registers 
used to control the PA during programming: the control and status registers, CSA and CSB 
and the hardware mode setting registers, AUX and MODE. See Section 5.1.6 for details 
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Figure 3-5. PA Data Format 

3.1.3.     Prototype Parameter RAM (PPRAM) 

As each 13-bit city-block distance enters the MU, it is accompanied by 48 bits of parameters 
for its RBF, which come from the PPRAM. These parameters include several fields, such as 
the RBF radius. The PPRAM can only be written by the microcontroller, and appears as three 
16-bit banks in the microcontroller's address space. Figure 3-7 shows the PPRAM. 

The addresses of the three banks, PPRAM1, PPRAM2, and PPRAM3, are given in Chapter 5. 
The fields of the 48-bit word passed to the MU pipeline, broken down by bank, are given in 
Figure 3-8. 
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The fields of a PPRAM word are: 

.     Count—C[0:15]—the number of training vectors that fall within this RBF during learning- 
used as a factor during classification when calculating probability density. 

•     Disable Flag—D—set to disable this prototype. 
.      Radius—R[0:12]—-the RBF threshold distance. 
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• Decay-Constant Mantissa—Km[0:3]— unsigned mantissa of the decay constant of the 
exponential function. 

• Decay-Constant Exponent—Kg[4:7]— signed exponent of the decay constant of the 
exponential function. 

• "Used" Flag—U—set when the PPRAM word is loaded with a valid prototype. 
• Probabilistic—P—indicates that the RBF threshold distance for this prototype is the 

minimum allowed threshold distance. This bit is passed through to the class identification 
result to indicate that only probabilistic, not deterministic, classification is possible with 
this prototype. 

• Class—S[0:5]—the class ID of the prototype. 

All prototypes that have their Used flag set to 1 will be processed by the classifier. To avoid 
the possibility of processing spurious data, all locations in the PPRAM should be written 
whenever the chip is loaded with a new set of prototypes, and unused prototypes should have 
their Used flag cleared to 0. 
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3.1.4.     Math Unit (MU) 

The inputs to the first stage of the MU pipeline are the fields described above for the PPRAM, 
accompanied by D, the 13-bit city-block distance calculated between the input vector and the 
prototype by the DCUs. The MU pipeline performs two functions based on the point in feature 
space defined by the input vector: it reports the class(es) of prototype(s) whose field of 
influence includes that point and it calculates the probability density for every class. Figure 3- 
9 shows the architecture of the MU pipeline. The Math Unit transfer function is described in 
Section 5.1.8. 

The MU pipeline and the next functional block of the classifier, the math unit RAMs 
(MURAMs), are closely tied together. Several stages of the pipeline access data in the 
MURAMs. The ports shown in Figure 3-9 are connected to the MURAMs, as shown in Figure 
3-10. The first stage of the MU pipeline writes to the Flag MURAM. The second stage writes 
to the Class Ust MURAMs. The fifth stage reads from the Probability MURAMs, and a result is 
accumulated which is written back to the Probability MURAMs following the sixth pipeline 
stage. 

Recognition of whether an input vector falls within a prototype's field of influence is indicated 
in the first stage of the MU pipeline by subtracting the threshold radius from the city-block 
distance and making a decision based on the sign of the result. This indication is used to 
update the 1-bit flag MURAM to indicates that the network associated that output class with 
the input vector. If this prototype is the first of its class to indicate recognition of the vector, a 
counter is incremented, the address it issues is used to allocate the next entry in the class-list 
MURAM and the prototype's P bit is copied into the result for that class. 

Also in the first stage of the pipeline, the smoothing factor (k) and the city-block distance (D) 
are multiplied, and this floating-point product is split into three components for separate 
processing. This split is done for efficiency, allowing each component to be handled by a 
circuit that is easy to implement in hardware, then the output components are recombined. 

After the first stage of the MU pipeline (See Figure 3-7), the four-bit exponent is processed by 
aligning its bits to the final result. The six most-significant bits (MSBs) of the mantissa are 
processed by a ROM lookup of the reciprocal of the exponential. The six least-significant bits 
are multiplied by a constant factor, the natural logarithm of 2 (i.e. In 2). The computation of 
the exponential decay function occurs in the second and third stages, with recombination 
occurring in the third stage. 

If an output class was indicated in the first stage as being recognized for the first time its 
class ID is written to the class-list MURAM one cycle later. The address for this cycle comes 
from one of two class counters, and the data comes from the latch for the class ID in the 
second stage of the pipeline. Two counters are provided so that when the probability and 
class-list MURAMs swap (they are both double buffers), the counters can also swap, giving 
the circuits that control the ORAM a value for the number of classes in the class list. 

The third stage of the pipeline produces the floating-point probability density for an RBF at the 
point in feature space described by the input vector. 
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In the fourth stage of the pipeline, the probability value generated in the previous stage is 
scaled by the prototype's Count, which is typically a count of the number of times a vector in 
the training set fell within the radius ofthat prototype, although some algorithms may establish 

MURAM0' USin9 °ther meanS'   The C'aSS ID fr0m th'S StagS 'S th6n S6nt t0 the Probability 

In the fifth stage of the pipeline, the scaled probability density of a single prototype is added to 
he accumulated value for all prototypes of the same class.  This floating-point sum is written 

to the probability MURAM after the sixth stage of the pipeline, addressed by the sixth-stage 
class ID. a 
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Once the last probability calculation has been performed for the input vector, the double- 
buffered MURAMs reverse roles, so that the classification results for the current vector can be 
uploaded to the host through ORAM while the next vector is processed. Both the class list 
and probability density values are computed simultaneously, so either or both can be 
uploaded to the host without re-running the classification. 

3.1.5.     Math Unit RAMs (MURAMs) 

The output of the ML) pipeline is loaded into the MURAMs. The architecture of the MURAMs, 
shown in Figure 3-10, is intimately tied to the pipeline. Four of the six stages of the pipeline 
shown in Figure 3-9 either provide an MURAM address, read data from an MURAM, or write 
data to an MURAM. The MURAM memories include: 

• Flag MURAM—a 1 x 64 memory used as a table of classes that have already recognized 
the input vector being presented. Each entry corresponds to one of the 64 possible 
classes. 

• Class Ust MURAMs—an 8 x 64 x 2 double buffer holding a list of the class IDs of 
recognized classes. A new byte is allocated every time a new class is encountered. 
(Unlike the other MURAM memories, the memories in this buffer are not indexed by class 
ID; they are addressed by counters, so they grow up from address zero.) 

• Probability MURAMs—a 16 x 64 x 2 double buffer that accumulates the probability density 
for each class. As with the flag MURAM, each MURAM address corresponds to one of 
the 64 classes. 

The MU pipeline sends its data to the set of class-list and probability MURAMs currently 
waiting to receive input (while the other set is available to unload data into the ORAM, 
discussed later). One set of MURAMs may be written with the data for the input vector being 
presented, while the other set passes data, if available, for the previous input vector to the 
ORAM or the microcontroller. After the input vectors have been processed, the MURAMs 
change roles. 

The flag MURAM is not accessible to the ORAM, so it is re-used every cycle. It is indexed by 
the class ID. When a class is recognized, the bit addressed by the class ID is set. If the bit 
previously was clear, the class had not yet been associated with this input vector. This 
causes the class counter to be incremented and allocates a word in the class-list MURAM. 
The counter keeps a running tally of the number of classes, which is used to address the 
class-list MURAM when a new word is allocated. 

The class-list MURAMs are 8 bits wide, consisting of a six-bit class ID, a seventh bit to 
indicate that the first prototype (highest numbered prototype) to recognize this input vector had 
been shrunk to minimum radius, and an eighth bit to indicate validity. When a prototype 
shrinks to the minimum radius, it is a probabilistic prototype. This bit aids in combined 
deterministic and probabilistic classification when prototypes are reordered to take advantage 
of this, i.e. that the deterministic prototypes of any class are all located at higher numbered 
prototypes than any of the probabilistic prototypes ofthat same class. Figure 3-11 shows the 
format of a byte in the class-list MURAMs. 
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The fields of a class-list MURAM word are: 

• Class ID—S[0:5]—Class ID of a class that includes the input vector. 
• Probabilistic—P—a prototype with the minimum radius recognized the input vector. This 

indicates that the first prototype to classify this vector was a probabilistic prototype. 
• Valid— V—this word has been written since MURAM initialization. 

The class-list MURAMs are addressed by a counter. The counter begins at zero and 
increments as new classes are encountered. 

The probability MURAMs consist of a 16-bit floating-point accumulator in the internal format of 
the Nil000 Accelerator. The internal format may be passed through ORAM or translated into 
an IEEE-compatible format as it passes out the ORAM. Figure 3-12 shows the internal format 
of a word in the probability MURAMs. 

15 10 9 0 

Exponent Mantissa 

Nil 000-021) 

Figure 3-12. Probability MURAM Word 

The fields of a probability MURAM word are: 

• Exponent—six-bit 2's-complement exponent. 
• Mantissa—10-bit fractional mantissa (i.e. 0 <= mantissa < 1). 

3.2.    Bus Interface 

The bus interface is used for communication between the host and either the microcontroller 
or the classifier. It is used by the host to program the flash memory, write vectors to the input 
buffer, read classification results from the output buffer, and access a set of registers used to 
interact with the microcontroller. 

The bus interface has an input and an output side, as shown in Figure 3-13. The external bus 
interface handles bus cycles to the host, and the internal bus interface handles bus cycles 
from the microcontroller. These interfaces are used to access these resources: 

• I/O Registers—a set of sixteen 16-bit registers used for communication between the host 
and the microcontroller. 

• Input RAM (IRAM)—a double buffer consisting of two 256 x 5 memories. Each memory 
can store one input vector. The IRAM is also integrated into the architecture of the 
classifier's pipeline, shown in Figure 3-2. 
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Output RAM (ORAM)—a buffer that receives the contents of the current MURAM, and 
optionally reformats the probability values from the internal 16-bit floating-point format 
into the standard IEEE 32-bit floating-point format. The ORAM is also integrated into the 
architecture of the classifier's pipeline, shown in Figure 3-2. 
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Both 32- and 64-bit data bus widths are available, as selected by the 64/32# signal. This 
signal is not allowed to change dynamically. The chip must be reset following a change. 

The Nil000 Accelerator may appear to external hardware as a block of memory. However, 
the host can only access IRAM and ORAM through addresses that act like I/O ports, in which 
the same address is accessed over and over, until all data has been transferred. Register bits 
indicate when the buffer memories are about to overflow or underflow, and a bit in the CRA 
register can be programmed to cause assertion of the service request SRQ# output to the host 
when the ORAM is full (see Chapter 5 for a description of the CRA register). 
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The IRAM, ORAM and virtually all other memories in the Nil000 are mapped into the 
microcontroller's address space and can be accessed by the microcontroller when the 
classifier is not running. Refer to Chapter 5 for the addresses of these resources. 

The main signals of the bus interface are: 

CLK—clock input. 
A[0:15]—address bus, input from host. 
D[0:63]—64-bit bidirectional data bus. 
ADSM— address/data strobe input from host. 
W/R#—read/write input from host. 
RDYit— bus cycle termination output to host. 
BRDYK— bus cycle termination output with burst-mode request. 
SMST#—input from host indicating the last data transfer of a cycle. 

The latter two signals, BRDY# and BI_AST#, are used for burst cycles, in which one 32- or 64- 
bit word is transferred per clock period. Burst cycles begin like non-burst cycles (which take a 
minimum of two clock periods each, if the external logic can support this speed by returning 
RDY# in the second clock) with the assertion of ADS#. However, the assertion of BRDY# by 
the chip allows the host to enter a bus mode in which each additional data transfer requires 
only one additional cycle. Host support for burst mode is optional. The Accelerator can 
accommodate vectors with up to 222 features, with each feature in a separate byte on the bus 
(the 5-bit feature must be placed in the high order 5 bits of a byte). See Section 3.7 for a 
detailed description of the bus signals. See Chapter 4 for the timing diagrams of bus cycles. 

3.2.1.     I/O Registers 

There are sixteen 16-bit I/O registers. All of them can be read by the host and the 
microcontroller. Some registers are read-only, and others can be written from only one side of 
the interface. The detailed description of the addresses and bit assignments for these 
registers appears in Chapter 5. 

Uses of some of these registers are defined by the microcontroller's software. By convention 
software running on the host and the microcontroller will use specific registers or fields within 
registers for particular purposes. These registers and fields mostly involve mode settings and 
network or algorithm parameters. The conventions defined by the standard microcontroller 
software are defined in Chapter 7. 

Many of these registers may be used to send requests to the microcontroller software. 
Customer-specific software may redefine the meaning of some of these registers and fields. A 
few registers, however, are hardwired to critical control and status functions, and they will be 
used for the same purpose in all applications. Some of these functions are: 

Interrupt—interrupt the microcontroller. 
Reset—reset the NM000 Accelerator. 
Reset IRAM— separate reset bit for the IRAM autosequencer. 
Resef ORAM— separate reset bit for the ORAM autosequencer. 
IRAM Full—indicates the IRAM is full. Writing to a full IRAM causes an error condition. 
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• IRAM Not Full— indicates the IRAM has not yet been loaded with a complete input vector, 
and it is waiting for more data. 

• ORAM Emprj^-indicates the ORAM is empty. Reading from an empty ORAM causes an 
error condition. 

• ORAM Not Empty—indicates the ORAM has results waiting to be unloaded. 

These bits give the host some control over the microcontroller, at least to the extent of 
interrupting it and resetting it. They also allow the host to poll the status of the input and 
output buffers without going through the microcontroller. 

The Nil000 Accelerator is always a slave to external bus cycles, so the host (or external 
control logic around the Nil000 Accelerator, such as a bus-master interface controller) must 
initiate bus cycles. The host system may use the hardwired status flags for the IRAM and 
ORAM for flow control to prevent overflowing or underflowing any buffers. 

The microcontroller also has a mechanism to interrupt the host. The mechanism is described 
later in this chapter. 

3.2.2.     Input RAM (IRAM) 

The IRAM is shown in Figure 3-14. It is a double buffer consisting of two 32 x 40 banks 
Each bank can store one 222-feature input vector (padded to 256 features), with 8 five-bit 
features packed into each 40-bit word. When the classifier is running, these banks are 
inaccessible to the microcontroller, however the host can load data to the IRAM. When the 
classifier is not running, the microcontroller can directly access the IRAM. The IRAM is 
mapped into the microcontroller's address space (see Chapter 5 for the microcontroller's 
memory map). 
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Microcontroller writes to the IRAM require loading a write latch, illustrated in Figure 3-15. The 
write latch is addressable in the microcontroller's address space. Note that unless the write 
latch is entirely filled with valid data prior to writing to IRAM, unknown data in those portions of 
the latch will be written into the IRAM. Writing to a location in the IRAM loads the locations' 
entire row with the contents of the latch. See section 5.1.3 for details. 
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Figure 3-15. IRAM Pre-Write Latch 

Chapter 5 contains the addresses for accessing the IRAM. Each of the two banks of the IRAM 
has its own set of latches and addresses. 

The features of the input vector, as received from the bus interface, are five-bit quantities 
aligned to the five most-significant bits of each byte on the bus interface. The lower three bits 
of each byte are ignored. 

The autosequencing logic for loading the IRAM works differently for 32- and 64-bit external 
data bus width. The vector loaded into the IRAM, as visible to the microcontroller, has a 
different organization depending on whether 32- or 64-bit bus width is selected. 

Table 3-1 shows the least significant bits for the addressing of a 17-feature vector in the IRAM 
for both 32- and 64-bit modes. It shows the mapping of each feature of the input vector and 
where the data is stored by the autosequencing hardware in the IRAM. The autosequencer 
loads the first feature of the vector at an address in the IRAM, and works toward lower 
addresses. These addresses are only relevant to the host program when it is accessing data 
in the IRAM using microcontroller mode. 
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Table 3-1. Example of IRAM Vector-Addressing LSBs 

Address LSBs Vector Feature 
(32-Bit Mode) 

Vector Feature 
(64-Bit Mode) 

00000 Unused Unused 

00001 Unused Unused 

00010 Unused Unused 

00011 10000 Unused 

00100 01111 Unused 

00101 01110 Unused 

00110 01101 Unused 

00111 01100 10000 

01000 01011 01111 

01001 01010 01110 

01010 01001 01101 

01011 01000 01100 

01100 00111 01011 

01101 00110 01010 

01110 00101 01001 

01111 00100 01000 

10000 00011 00111 

10001 00010 00110 

10010 00001 00101 

10011 00000 00100 

10100 Unused 00011 

10101 Unused 00010 

10110 Unused 00001 

10111 Unused 00000 

In 32-bit mode, the last address to be loaded is at location OOOxx (binary) where xx are the 
inverse of the two least significant bits after subtracting one from the vector length. In the 
example in Table 3-1, the vector length is 17 (decimal) or 10001 (binary). Subtracting one 
from 10001 gets 10000. The last two bits are then inverted, so xx is 11 (binary) and therefore 
the last address to be loaded is 00011. The first address to be loaded is the last address plus 
the vector length minus 1. In this example, that is 00011 plus 10000 which is 10011. 
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In 64-bit mode, the last address to be loaded is at location OOxxx (binary). In the example in 
Table 3-1, xxx is 111 (binary) and so the last address to be loaded is 00111. The first address 
to be loaded is 00111 plus 10000 which is 10111. 

3.2.3.     Output RAM (ORAM) 

The ORAM is shown in Figure 3-16. It is a small buffer, with a pre-write latch between it and 
the MURAMs. The MURAMs are more than simple double buffers; they feed back their 
contents to the MU pipeline. However, once an input vector has been read into one of the two 
MURAM buffers and completely processed, the contents of that buffer are read out to the 
ORAM while a new input vector is being read into the other MURAM buffer. 
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Figure 3-16. Output RAM (ORAM) 

The ORAM is 16 x 64-bits in size, so it can hold all of the data generated by classifying an 
input vector. 

When the classifier is running, the ORAM is accessible to the host. The number of valid reads 
that can be made from the MURAM selected for output depends on the mode. If the class-list 
MURAM is being uploaded, the number of entries in the ORAM will be equal to the number of 
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firing classes. If the probability MURAM is being uploaded, the number of entries will be 
specified by a byte in the DIM register (see Chapter 5). 

In microcontroller mode (classifier not running), the microcontroller may directly access the 
ORAM. On reads, the ORAM is mapped into the microcontroller's address space (see 
Chapter 5 for the microcontroller's memory map). 

Microcontroller writing to the ORAM requires loading a pre-write latch, illustrated in Figure 3- 
17. The write latch is also addressable in the microcontroller's address space. Like the IRAM, 
there is a special range of addresses for referencing the destination of a write. Unlike the 
IRAM, the ORAM write latch is a four-word shift register. Writing less than four words of data 
to the write latch before invoking a write operation may result in data appearing in the wrong 
position within a word. 

4_ 

1     Pre-Write 
Shift Register 

Nil 000-02!; 

r— 

—w 

 , r ir                   ir                  jr 

t 
16-Row 
SRAM 

I 
Figure 3-17. ORAM Pre-Write Latch 

3.3.    Computational Precision 

The computational precision of variables is listed in Table 3-2. Floating-point probabilities 
appear in one of two formats, 16-bit internal or 32-bit IEEE, as described in the immediately 
following sections. 
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Table 3-2. Computational Precision 

Variable 

Mantissa Exponent Smallest 
Representable 

Non-Zero Value* 

Largest 

Representable 
Value* 

Actual 

Smallest 
Non-Zero 

Value* 

Actual 

Largest 
Value* 

bits format bits format 

V 5 00000 X X 1 25-1 X X 

d 13 0...0 X X 1 213-1 X X 

X 13 0...0 X X 1 213-1 X X 

Km 4 0000 X X 0 8 X X 

k 4 0000 4 sOOO 2"20 
15*29 2"20 

15*2"2 

kd 10 .0...0 6 sOOOOO 2-20 232^22 2-20 
218-214 

2-Kd 10 .0...0 6 sOOOOO 2"37 JS2_J22 2-37 1 

c 16 0000 X X 1 216-1 1 216-1 

c.2-kd 10 .0...0 6 sOOOOO 2-37 232_222 2-37 
216-1 

SC*2"kd 20 .0...0 6 sOOOOO 2-37 232_212 2"37 226_2io 

IEEE-7S4 
single 
precision real 

23 1.0...0 8 S0...0 2"127 „128 
X X 

s - sign bit 
x = not applicable or not available 
* = Representable Value—Value that can be represented by the internal number format. 

Actual Value—Value that is supported by the chip, external sotware or microcode must enforce limits on K« and 
Koif. 

3.3.1.     16-Bit Internal Format 

Figure 3-18 shows the MU internal format used for floating-point numbers. In this format, the 
6-bit exponent uses 2's complement to represent negative numbers. The number represented 
is O.F x 2±E*, where the MSB of F is 1 unless the entire number is zero. 

15 10 9 0 

E* F* 

NI1 000-02( 

Figure 3-18. Internal 16-Bit Floating-Point Format 
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3.3.2.     32-Bit IEEE Format 

Figure  3-19  shows the  IEEE  32-bit format for floating-point  numbers.     The  number 
represented is (-1)S x 1.F x 2^-127 There js no restrjctjon on the MSB of F 

Figure 3-19. IEEE 32-Bit Floating-Point Format 

Bit 4 of the CRB register selects the output format. If set, the IEEE 32-bit format is used If 
clear, the internal 16-bit format is used. The conversion from the 16-bit format to the 32-bit 
format is accomplished through the mapping: 

S= 0 
E = EJ + (5e)16, if E* is negative 

E  + (7e)l6. if E* is positive 
F= F*x(4000)16 

3.4.     Microcontroller 

The 16-bit, custom microcontroller (MC) has a Harvard architecture (i.e. physically separate 
instruction and data memories). It is supported with 4K words of flash program memory 256 
words of general-purpose data RAM (GRAM) and a 32-bit timer. 

3.4.1. Memory-Map Overview 

Figure 3-20 gives an overview of the Accelerator's memory map, most of which is accessible 
to the microcontroller. For a detailed memory map, see Chapter 5. 

3.4.2. Architecture 

Figure 3-21 shows the architecture of the microcontroller datapath. It has four general- 
purpose registers and a simple instruction set. Instructions consist of one or two 16-bit words. 

There are four important microcontroller buses, shown in Figure 3-22: 

• PABUS—program memory address bus. 
• PDBUS—program memory data bus. 
• ABUS—general-purpose address bus. 
• DBUS—general-purpose data bus. 
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Figure 3-21. Microcontroller Datapath 

The PABUS and PDBUS are used to access the microcontroller's flash memory. The ABUS 
and DBUS access the microcontroller's 256-word RAM, 32-bit timer and almost all of the 
registers and memories within the classifier. The 16-bit external data interface to the Bus 
Control Unit is for PG access modes, since the PGFLASH is 16 bits wide. 
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3.4.3.     Registers 

Most  instructions   have  one  or two  4-bit  fields  to  specify  registers.     The  available 
microcontroller registers are: 

RO—General-purpose register 0. 
R1—General-purpose register 1. 
R2—General-purpose register 2. 
R3—General-purpose register 3. 
Zero—Reserved always reads as zero. 
One—Reserved always reads as one. 
DS1—Data segment register 1. 
DS2—Data segment register 2. 
SP—Stack pointer. 

The data segment registers are used for address generation.  The stack is 64 levels deep, so 
only the low six bits of the stack pointer are used; the remaining bits are reserved. 
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3.4.4. Flags 

All conditional jump instructions test the microcontroller status flags for the following 
conditions (encoded with a four-bit binary field in the instruction word): 

Carry (C) 
Zero (Z) 
Negative (N) 
Positive (P) 
Overflow (O) 
Interrupt Request (IR) 
Interrupt Enable (IE) 
Stack Error (SE) 
General Error (GE) 
Multi-Class Firing (MC) 
FLASH-Write (MC) 
MURAM1 Ready (M1) 
MURAM2 Ready (M2) 
PADCU Busy (DC) 

Bits in the HS1 register correspond to the above list of flags and the host can read these flags 
by reading HS1. In addition to the conditional jump instructions, three other instructions 
contain a flag-specifier field: of them, SFLG and CFLG, allow any flag to be set or cleared and 
WAIT suspends execution until a specified flag is set. 

3.4.5. Instruction Set 

The instruction set includes the following basic arithmetic and logical instructions: 

•      Double-Operand Arithmetic Instructions—add (ADD),  add with carry (ADC)   subtract 
(SUB), and compare (CMP). 
Single-Operand Arithmetic Instructions—increment (INC) and decrement (DEC). 
Double-Operand Logical Instructions—and (AND), or (OR), and exclusive-or (XOR). 
Single-Operand Logical Instructions—complement (NOT),  shift left (SHL)   shift  right 
(SHR), rotate left (ROTL), and rotate right (ROTL). 

Arithmetic and logical instructions only operate on 16-bit register operands. There are no 
operations on memory operands, other than reading or writing data to a register. See Chapter 
5 for a table of the instruction opcodes, mnemonics and operations. 

The six data movement instructions are: move (MOV), load (LD), read (RD), write (WR), push 
(PUSH), and pop (POP). The move instruction only transfers data from one register to 
another. The load instruction puts a 16-bit immediate operand following the instruction word 
into a register. The read and write instructions transfer a word between a memory location 
and a register. There are many flavors of read write due to the variety of addressing modes. 
The push and pop instructions transfer data between a register and the top of the stack. 
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Eight conditional jumps utilize the flag field that are described in Section 3.4.4. Both positive 
and negative polarities are supported for each condition. The address of the target of the 
jump can be calculated using a register or a 16-bit immediate operand following the 
instruction. The address can be absolute or Program Counter (PC) relative; i.e. the address 
can be used directly, or it can be added to the program counter. All combinations of these 
three options (condition, register/immediate and absolute/PC relative) are supported. 

Ten conditional jumps first test common microcontroller conditions then jump to an address 
specified with a PC-relative 8-bit address embedded in the instruction. Four unconditional 
jumps result from combinations of where the address comes from (i.e. register or immediate) 
and how it is applied to the PC (i.e. absolute or relative). 

Five "unconditional jump to subroutine" (JS) instructions are provided. They push the 
program counter on the stack, then jump to an absolute address specified by a register or 16- 
bit immediate, or a PC-relative address specified by a register, 16-bit immediate, or 8-bit field 
embedded in the instruction word. 

Chapter 5 gives more detailed information on addressing modes, instruction mnemonics, 
syntax and flag cross reference. 

3.4.6.     Program Memory (PGFLASH) 

The microcontroller program memory is stored in a 4K x 16 flash memory. This is a form of 
non-volatile electrically-erasable memory. PGFLASH can only be programmed from the host 
side of the interface. The microcontroller can only read PGFLASH for instructions. 

When programming PGFLASH using a development system or other external programming 
method, a mode is entered by asserting the MC# signal. In this mode, a new register set 
appears for controlling flash memory program cycles. After programming and negating MC#, 
the Accelerator remains in reset mode until the host clears the reset bit in the CMR register. 
Programming is controlled by registers that are only accessible to external logic during 
programming mode. Chapter 5 describes the CMR register and the programming procedure. 

Figure 3-23 shows the architecture of the PGFLASH during programming. The memory is 
programmed by accessing a set of registers: 

• Dafa Regr/sfer—stores data to write to PGFLASH. 
• Address Register 1—stores a read address for PGFLASH. 
• Address Register 2—stores a read/write address for PGFLASH. A multiplexer selects one 

of the address registers to drive PGFLASH. When address register 2 is read, the data 
returned is the output of the multiplexer. The multiplexer is controlled by a bit in user 
control register 2 (described below). 

• User Control Register 1—controls the operation of drivers and sense amplifiers for the 
flash array. 

• User Control Register 2—controls verification of the programming of the array and 
controls the multiplexer select line for addressing the flash array. 

• Status Register—reports status of voltage levels against on-chip voltage references. 
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Figure 3-23. PGFLASH During Programming 

3.4.7.     Timer 

The microcontroller has a timer accessed as a pair of 16-bit words. Figure 3-24 shows the 
structure of the timer. The timer is free-running, clocked by the system clock. At 25 MHz it 
reaches its terminal count and wraps around in 171.8 seconds. Note that instruction latency 
should be added to the timer values. 

c 

Figure 3-24. Timer 

,'16 

Timer 
(high word 

1C0h 

> 
.'16 

Timer 
(low word) 

1C00h 

, Clock 

Nil 000-03: 

3.4.8.     Reset Initialization 
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When the microcontroller is reset, the PC is initialized to address 0000h in the PGFLASH to 
begin execution. The microcontroller can be reset by setting bit 15 of the chip mode register 
(CMR). Setting this bit puts the entire chip into reset mode, clearing the bit clears the reset 
condition. The bit is set automatically when the RESET* signal is asserted. See Chapter 5 
for a detailed description of the CMR register, or Section 3.7 for a description of the signals. 

There are separate reset bits for the IRAM and ORAM. The IRAM and ORAM are unavailable 
to the microcontroller or the classifier while in reset mode. The reset bits must be cleared to 
enable operation of the classifier. Before they are cleared, the following things must be 
initialized: 

• 32/64-Bit Bus Width—the width of the external data bus, as defined by the level on the 
64/32# signal. 

• Output Mode—whether class IDs or class probabilities are the output, controlled by a bit 
in the CRA register. 

• Vector Dimensionality—the number of features in an input vector, loaded into the DIM 
register. For probabilistic mode, the number of desired classes to upload must also be 
initialized in this register. 

• Floating-Point Format—lor probabilistic mode, whether the native 16-bit floating-point 
format or the IEEE-compatible 32-bit format is used for output, controlled by a bit in the 
CRB register. 

3.4.9.     Interrupts 

Three forms of interrupts exist between the Nil 000 Accelerator and the host system: 

• Programmed Host-to-Microcontroller—-the host writes to the IIR register or CMR register. 
If interrupts are enabled, a subroutine jump to address is triggered as a side-effect of this 
write. See Chapter 5 for more information about the IIR and CMR registers. 

• Hardwired Host-to-Microcontroller—-the host (or external logic) asserts the MCINT# signal 
or SRQ# signal to invoke an interrupt service routine. If interrupts are enabled, the 
microcontroller performs a subroutine jump to address 0000h. 

• Hardwired Microcontroller-to-Host—the microcontroller writes to the XIR register. See 
Chapter 5 for more information about the XIR register. The service request signal 
(SRQ#) is automatically asserted as a result of this write. The host responds by asserting 
IACK, to cause the microcontroller to negate SRQ#. 

A bit in the microcontroller control and status register (HS1[6]) is used to enable interrupts to 
the microcontroller from the host. This bit is clear following reset, so interrupts are initially 
disabled. 

The IIR register may be read by the microcontroller's interrupt handler routine to find the 
source of the error and respond appropriately. This registercontains a set of condition flags as 
described in Chapter 5; it is not an interrupt vector. 
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3.4.10.   Errors 

Three types of errors can occur: 

• External Error—an attempt by the host to write to a full IRAN! or read from an empty 
ORAM, or the assertion by external logic of the SRQ# signal. The BERR# signal is 
asserted. 

• Internal Stack Error—microcontroller has overrun or underrun the stack space by popping 
an empty stack or pushing onto a full stack. This causes stack-error flag to be asserted 
as described in Section 3.4.4. 

• Internal General Error—microcontroller has overrun or underrun a buffer, which asserts 
the general-error flag described in Section 3.4.4. 

3.5. System-Level Architecture 

Because the Accelerator is addressed like memory, it will always be a bus slave. There are 
several system design options available for the NH000 Accelerator: 

• Processor Bus—placement directly on the bus with the processor. 
• Local Bus—interface through a local bus standard, such as PCI or VL-Bus. 
• Expansion Bus—a standard interface for expansion cards, such as the ISA bus, the EISA 

bus, or Micro Channel. 
• Hardwired—a dedicated interface to an embedded controller, such as the i960 family of 

embedded RISC processors. The controller could also be an ASIC. 

The Nil000 Accelerator has an input signal, MULTICHIP#, to inform microcontroller software 
that it is in a multichip system. The microcontroller can test this condition in the CRB register 
(see Chapter 5). 

Multichip systems must contend with two issues. During training, when a new prototype is 
allocated, they must collect Dmin (the city-block distance between the input vector and the 
nearest prototype vector of a different class) from all Accelerators to find the global Dmin used 
to initialize the radius of the prototype. When doing probabilistic classification, probability 
densities will have to be uploaded to the host from all chips that they can be combined. 

3.6. Classification Timing 

The timing of the classification pipeline varies with the number of features in the input vector 
and the number of valid prototypes. If the latency is short enough, the main source of delay 
will be I/O. 

Figure 3-25 shows the pipelined processing of three vectors with up to 500 prototypes. If the 
host system is not a limiting factor or if the number of dimensions is low, filling one bank of 
the IRAM will be very quick compared to processing the vector. As soon as the first vector is 
loaded, it can be dispatched for processing while the second vector is being loaded. 
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Figure 3-25. Pipeline Usage (For Up To 500 Prototypes) 

After the first vector is processed by the distance calculation units, the IRAM buffers can swap 
and the third vector can be loaded. At this point, the first vector will be in the math unit 
pipeline and the second vector will be in distance calculation unit. As each vector is 
processed by the MU pipeline, it can quickly be loaded into the ORAM. 

Figure 3-26 shows pipelined operation for more than 500 prototypes. Operation of the MU 
pipeline is fully overlapped with distance calculation. One feature of the input vector can be 
compared to the corresponding features of up to 500 prototypes in two cycles. Two additional 
cycles are required when over 500 prototypes are used. 
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Figure 3-26. Pipeline Usage (For More Than 500 Prototypes) 

The number of clocks required by each phase of the pipeline can be estimated from the 
following expressions. 

Input—<8L / B) + I 
Distance Calculation—21 + I, if P <= 500 
Distance Calculation—2{2L + I), if P > 500 
MU Pipeline—P + I 
Output—{CR / B) + C + I 

The parameters of these expressions are shown below. 

L—Vector Length 
P—Number of valid Prototypes 
ß—Bus width in bits (32 or 64) 
C—Number of Classes required 
R— Results size in bits (8 for RCE, 16 or 32 for PRCE) 
/—Initialization time, about 5 clocks for each block 
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3.7.    Signal Descriptions 

Name Type Description 

Clock, Address, and Data (Synchronous) 

CLK I Clock. This clock must be shared with or divided down from the 
hosfs clock, so that all bus transactions are synchronous with it. 

A[0:15] I Address. Driven by the host to access the Accelerator's 
microcontroller program memory (PGFLASH), prototype-array 
memory (PA), prototype-parameter memory (PPRAM), and control 
and status registers. Detailed memory and register address maps 
are given in Chapter 5. 

D[0:63] I/O Data. As inputs, the host writes feature vectors for classification, 
control information, and microcontroller programs on this bus. The 
inputs include 5-bit input vector components; 16-bit data, register 
contents, and microcontroller instructions; or 64-bit multiple-input 
vectors. 

As outputs, the host reads vector classifications or probabilities, 
status information, and microcontroller-program verification. The 
outputs include 8-bit classes; 16-bit data, register contents, and 
microcontroller instructions; 32-bit IEEE standard floating point 
values; or 64-bit groups of classes or probabilities. 

Bus-Cycle Definition and Control (Synchronous) 

ADS* I Address Strobe. When asserted by the host on a rising edge of 
CLK, this signal causes the Accelerator to sample CS# and the 
address on A[0:15], thereby initiating a bus cycle. 

CS# I Chip Select. Asserted by the host to indicate that the Accelerator 
is being addressed. The signal must be held asserted throughout 
the bus cycle. The signal is used to select one of potentially 
multiple Nil 000 Accelerators. 

BLAST* I Burst Last. When asserted by the host, this signal indicates the 
last data transfer in the current cycle, whether burst or non-burst. 
For burst cycles, the host must hold BLAST# negated until the last 
data transfer of the cycle, at which time it asserts BLAST*. For 
non-burst cycles, the host asserts BLAST* during the first (and 
only) data transfer. The signal is compatible with the x86 BLAST* 
architecture; however, only a maximum of 64 bits can be burst to or 
from the Nil 000 Accelerator. 

W/R# I Write or Read. Driven by the host on the same rising clock edge 
as ADS*, CS#, and BLAST*, to indicate that the current bus cycle 
is a write (high) or read (low). 

RDY# o Non-Burst Ready. When asserted by the Accelerator, this signal 
indicates that the data on D[0:63] are valid (for output) or accepted 
(for input) and that it is the last data transfer in the current bus 
cycle. The signal terminates the bus cycle. For a burst cycle, RDY* 
is only asserted on the last transfer of the burst. 
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BRDY# 

BERR# 

64/32# 

MC# 

MULTCHIP* 

Burst Ready. When asserted by the Accelerator, this signal 
indicates that the data on D[0:63] is valid (for output) or accepted 
(for input) and that more data may be transferred in the current bus 
cycle. The signal does not terminate the current bus cycle and is 
not asserted on the last transfer of a burst; instead, RDY# is 
asserted. 

Bus Error. When asserted by the Accelerator, this signal indicates 
that illegal bus-definition conditions have occurred. For example, the 
host may attempt to write to the input buffer when the Accelerator 
is not in an appropriate mode or when the buffer is full, or the host 
may attempt to access the output buffer before data is available. 
The signal also terminates the current bus cycle. This signal is 
open collector. 

64-Bit or 32-Blt Data Bus. Driven by the host to select 64-bit 
(high) or 32-bit (low) operation on the D[0:63] bus. Data alignment 
is described in Chapter 4. 

Microcontroller. Asserted by the host on the same rising clock 
edge as ADS# and CS# to read or write the Accelerator's 
microcontroller-program memory (PGFLASH). 

Multi-Chip Operation. Asserted by the host or tied to ground when 
multiple Nil 000 Accelerator chips are to operate in parallel on the 
same address and data bus. When asserted, the Accelerator alters 
its data flow, primarily during learning. 

Interrupt Control (Asynchronous) 

SRQ# 

IACK# 

MCINT# 

ERROR# I/O 

Service Request Asserted by the Accelerator's microcontroller to 
indicate that valid output is available on the data bus, an error has 
occurred, or some other action by the host is needed. The signal is 
also asserted when the microcontroller writes to the XIR register, 
and held asserted until the host asserts the IACK# signal. 

Interrupt Acknowledge. Asserted by the host to acknowledge that 
it sampled the Accelerator's assertion of SRQ#. 

Microcontroller Interrupt Asserted by the host to force the 
Accelerator's microcontroller to jump to a specified program 
address. 

Error. As an input, asserted by the host to indicate interrupt to the 
microcontroller. On receiving an error, the Accelerator will identify 
the reason for the interrupt by reading the IIR register. 

As an output, asserted by the Accelerator to indicate that an 
internal error, such as data underflow or overflow in an I/O buffer. 
On receiving an error, the host should read the status register, XIR, 
to determine the nature of the error. This signal is open collector. 
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RESET# 1 Reset Asserted by the host to halt and reinitialize the Accelerator. 
To exit the Reset state, the host must subsequently write a 0 to bit 
15 of the CMR, whereupon the microcontroller begins executing 
instructions in NORMAL mode from location 1 in the PGFLASH 
(address F001h). 

The host can also reset the Accelerator by writing a 1 to bit 15 of 
the CMR register. 

System and Power 

vcx p +5 Volt Memory Supply. Used during normal operation by the 
prototype array (PA) and the microcontroller's program flash 
memory (PGFLASH). 

Vpp p +12 Volt Programming Supply. Used during programming by the 
prototype array (PA) and the microcontroller's program flash 
memory (PGFLASH). 

"cc p +5 Volt Supply. 

^ss p Ground. 
Type: I = Input, O = Output, P = Power or Ground. 
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BUS OPERATIONS 

This chapter discusses the interaction between a host system and the Nil000 Recognition 
Accelerator through various bus operations. Figure 4-1 shows the Accelerator's buses. 
Externally, the I/O unit (IRAM, ORAM, and I/O registers) connects to the host system through 
the signal pins. Internally, the I/O unit connects to the following buses: 

. Data I/O Bus (DIO bus)—Connects to IRAM, ORAM and I/O registers. The I/O data path 
is either 32- or 64-bits wide. 

• Internal Address and Data Buses (Abus and Dbus)—Serves as the data path of the 
microcontroller. Abus is a 16-bit address bus, and Dbus is a 16-bit data bus. 

• Microcontroller Program Address and Data Buses (PAbus and PDbus)—Serves as the 
internal instruction path of the microcontroller. PAbus is a 16-bit address bus, and PDbus 
is a 16-bit instruction (data) bus. 

4.1.    Hardware-Controlled Access Modes 

The Nil 000 Accelerator supports 32-bit or 64-bit data output at a bus clock of up to 25 MHz. 
The Accelerator interface is designed for synchronous operation using the bus clock as the 
Accelerator clock. A set of modes for access to the Accelerator determines which internal 
buses are accessible to the host, and which pin groups are used in data transfers with the 
host. The following list summarizes the access modes supported by the Accelerator: 

NORMAL—Used for classification and learning. 
PG—Used to read from program memory or load microcontroller programs into program 

memory (PGFLASH). 
RESET—Used to suspend precharging and most latching and to initialize state machines. 

After power up, the Accelerator microcontroller idles until the host releases it from the reset 
state by writing a 0 to bit 15 of the CMR register. In addition, the appropriate access-mode 
control signals, shown in Table 4-1, must be stable before taking the chip out of the reset 
state. The access mode control signals configure the address space to provide access to one 
of the following: 

• I/O unit (access IRAM through address 2000h, ORAM through 2800h, and I/O registers). 
• PGFLASH and associated registers. 

Other memory locations and registers can only be accessed by the microcontroller. See 
Chapter 5 for details. The address pins A[0:15] are mapped to the corresponding internal 
address space. Table 4-1 summarizes the control-signal settings and mapping of data and 
address pins for the access modes. 
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Table 4-1. Hardware-Controlled Access Modes 

Mode Access Mode Control Signals Data Bus3 Address 
Bus 

cs# W/R# MC# RESET* 64/32# D[0:15] D[16:31] D[32:63] A[0:15] 

NORMAL 
Write 

0 1 1 1 1 orO DIO[0:15] DIO[16:31] DIO[32:63) AIO[0:15] 

NORMAL 
Read 

0 0 1 1 1 orO DIO[0:15] DIO[16:31] DIO[32:63] AIO[0:15] 

PO1 Write 0 1 0 1 0 PDBUS[0:15] undefined undefined PABUS[0:15] 

PO1 Read 0 0 0 1 0 PDBUS[0:15] undefined undefined PABUS[0:15] 

RESET2 X X X 0 X inactive inactive inactive inactive 

1. In PG mode, the internal logic (except PGFLASH contents and registers) is reset. 
2. When RESET, the internal logic (including PGFLASH registers) and the external bus interface are reset, except 

the non-volatile PGFLASH contents. 
3. When 64/32# is asserted, 32-bit data bus (D[0:31]) is selected. When 64/32# is deasserted, 64-bit data bus 

(D[0:63J) is selected. 

When used for output, the data-bus bits are grouped as one of the following: 

• 8-bit data for firing class IDs. 
• 16-bit data for internal format probability densities. 
• 32-bit data for IEEE floating-point format probability densities. 
• 64-bit data for two IEEE floating-point numbers. 

When used for input, the data-bus bits are grouped as: 

• 8-bit data for input vector components. 
• 16-bit data for register contents and microcontroller instructions. 

See Chapter 5 for details. 

Input vector components are aligned to the high-order 5 bits for each byte. For example, the 
first 5-bit component in each input vector should be transferred to the Accelerator on pins 
D[3:7], with D7 receiving the most-significant bit of the component. The three least significant 
bits, D[0:2], are ignored. 16-bit data is expected in the lowest 16 bits of a 32- or 64-bit transfer. 

The Accelerator does not always require the use of all 64 data I/O bits for transfers with the 
host. Examples include: 

• The Accelerator is operated in a system with a 32-bit data path.   In this case, the upper 
32 data pins are not used in the data transfer. 

• The internal resources being accessed have a 16-bit data path. This is the case in the PG 
modes; the PDbus and the Dbus are only 16 bits wide. 
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4.1.1. Normal Mode (NORMAL) 

NORMAL mode has the following characteristics: 

The Accelerator may perform classification, learning or housekeeping. 
• The Accelerator acts as a slave processor in interactions with the host. 
.     The Accelerator uses its SRQ# signal to request service.   See Chapter 5 for details of 

microcontroller interrupt handling. 
• Input vectors may be sent to the Accelerator and classification results may be received by 

the host. 
• Commands may be written to the Accelerator and status read by the host. 
.     The classification pipeline may be enabled or the Accelerator may operate under control 

of the microcontroller for learning or housekeeping. 

The host writes and reads via the I/O unit's buffers, namely the IRAM, ORAM, and I/O 
registers. The width of the data path could be either 64 or 32 bits, as indicated by the 64/32# 
signal. See Chapter 5 for the accessible address spaces. Accessing addresses other than 
those for the IRAM, ORAM and I/O registers will yield invalid results. 

NORMAL mode is initiated by deasserting the MC# signals. The direction of data transfer 
(input or output) is indicated by the W/R# signal. 

4.1.2. PGFLASH Access Modes (PG Modes) 

There are two PG modes, as described in the following sections. In these modes the host 
can write or read the PGFLASH control registers through the microcontroller This allows 
control, reading, programming, and erasing of the PGFLASH in order to upload or download 
the microcontroller program. In these modes, the internal logic (except PGFLASH contents 
and registers) is reset. The external bus interface is not reset. The reset condition is 
maintained when the NORMAL mode is re-entered from the PG mode. 

4.1.2.1. PGFLASH Program Mode 

In this mode, the microcontroller is halted while its PGFLASH memory is written by the host 
This mode is initiated by asserting MC# and driving W/R# high to indicate a write operation 
After MC# is subsequently deasserted, the microcontroller remains in the halted state until a 
command is written to the CMR register that clears bit 15 ofthat register to zero. 

The A[0:15] pins are used to address the memory locations into which instructions are to be 
written. Addresses drive the internal Program Address Bus (PAbus) and are latched into a 
program-address register associated with the PGFLASH. Addresses are latched coincident 
with writing of the instruction into a second program address register. Once an address has 
been latched, a series of control words must be written to the two 16-bit control registers 
associated with the PGFLASH. The required sequence is described in the PGFLASH 
programming section of Chapter 5. 

Only 16 bits (D[0:15J) are used for data transfer, since the PDbus is 16-bits wide Data on 
D[16:63] should be set to 1 on input. 
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4.1.2.2. PGFLASH Read Mode 

In this mode, the microcontroller is halted while its PGFLASH memory is read by the host. 
The internal Program Data Bus (PDbus) drives the external data pins, D[0:63]. 

This mode is initiated by asserting MC# and driving W/R# low to indicate a read operation. As 
in the case of load operation, only 16 bits (D[0:15]) are used for data transfer. 

4.1.3.     Reset Mode (RESET) 

Bit 15 of the CMR register is the Accelerator's reset latch. Any of the following conditions can 
reset all or parts of the Accelerator: 

• The RESET* signal is asserted at the rising edge of CLK. 
• The MC# signal is asserted at the rising edge of CLK. 
• A value of 1 is written to bit 15 of the CMR register (by the host or the microcontroller). 

The first and third condition above reset the entire Accelerator, which includes the external bus 
interface, PGFLASH, and other internal logic. The second condition alone resets the internal 
logic, except the contents of PA, PGFLASH and the PGFLASH registers. 

When the Accelerator is reset, all precharging and most latching is suspended. An active 
clock is still distributed to most blocks, but the blocks become idle. All state machines are re- 
initialized. There are two exceptions to these reset actions: 

• The external bus interface is only forced into its initialization state when the RESET* 
signal is asserted on a rising edge of CLK. 

• The PGFLASH is not reset if the MC* signal is asserted. 

The first exception allows the external bus interface to function, so that the host can write a 0 
into bit 15 of the CMR register. The second exception enables the PGFLASH to be 
manipulated while all other units on the Accelerator (except the external bus interface) are 
deactivated during the PG modes. 

After the Accelerator is reset, operation can only be restored by the host deasserting RESET* 
and writing a 0 to bit 15 of the CMR register. The Accelerator is put into NORMAL mode if 
MC* and RESET* are deasserted, and CS# is asserted. The microcontroller starts executing 
instructions from location 1 in the PGFLASH which is at address F001h in the memory space. 

4.2.     Bus Cycles 

In NORMAL and PG modes, 64, 32 or 16 bits can be transferred. The Accelerator supports 
both burst and non-burst transfers. Both the host and the Accelerator can terminate a bus 
cycle, but only the host can initiate one. The timing diagrams in this section illustrate the read 
and write cycles that can be performed in the NORMAL and PG modes. 
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Table 4-2 shows the signals used to control bus cycles. A cycle starts when ADS# and CS# 
are both asserted by the host at a rising edge of CLK. At the same time, the host drives the 
address on A[0:15] and the W/R# signal to define a read or write. 

Data (whether input or output) are not transferred unless the Accelerator asserts RDY# or 
BRDY#. If the Accelerator asserts RDY#, the cycle is terminated by the Accelerator after a 
single bus-width of data are transferred. If the Accelerator asserts BRDY# during the first 
transfer, additional transfers can be made in that cycle. The BLAST* signal, when asserted 
by the host at the beginning of a cycle, indicates either a single-bus-width (non-burst) cycle or 
the last data transfer of a burst cycle. If the Accelerator asserts BRDY# and the host asserts 
BI_AST# at the same time, the host is terminating the cycle. If the Accelerator asserts neither 
RDY# nor BRDY#, data are not transferred. If the Accelerator asserts BERR#, data are not 
transferred and the cycle is terminated. The BLAST* signal always indicates the last transfer 
of any cycle (burst or non-burst); it is not required for a burst transfer, although when asserted 
by the host it always indicates the end of a cycle from the hosts viewpoint. 

4.2.1.     I/O-Register Read or Write 

The I/O registers can be read or written by the host in single (non-burst) cycles when the 
Accelerator is operating in the NORMAL hardware-controlled access mode. Figure 4-2 shows 
an l/O-register read cycle followed by an l/O-register write cycle. The addresses of the I/O 
registers are given in Chapter 5. 

A read cycle begins when the host asserts ADS# and CS# and the Accelerator samples them 
at the rising edge of CLK. At the same time, the host drives the address, A[0:15], and it drives 
W/R# low. The host also asserts BLAST* at the beginning of the cycle to indicate a single or 
non-burst data transfer, i.e., the first data transfer is the last transfer expected in the cycle. 
When the Accelerator responds by placing valid data on D[0:31], the Accelerator asserts 
RDY* indicating that the host should sample the data. 

A write cycle, shown in the right side of Figure 4-2, follows essentially the same protocol as 
the read cycle except that the host drives W/R* high and it drives the data on D[0:31] at the 
beginning of the cycle, at the same time that it drives ADS*, CS#, and the address. The 
Accelerator terminates the cycle in the same manner as it terminates a read' bv assertina 
RDY* 
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Table 4-2. Cycle-Definition and Control Signals for Normal and PG Modes 

Pins Driven By Description 

ADS* Host Address Strobe. When asserted by the host on a rising edge of CLK, 
this signal causes the Accelerator to sample CS# and the address on 
A[0:15], thereby initiating a bus cycle. 

CS# Host Chip Select. Asserted by the host to indicate that the Accelerator is 
being addressed. The signal must be held asserted throughout the bus 
cycle. The signal is used to select one of potentially multiple NMOOO 
Accelerators. 

BLAST* Host Burst Last. When asserted by the host, this signal indicates the last 
data transfer in the current cycle, whether burst or non-burst. For burst 
cycles, the host holds BLAST* negated until the last data transfer of the 
cycle, during which it asserts BLAST*. For non-burst cycles, the host 
asserts BLAST* during the first (and only) data transfer. The signal is 
compatible with the x86 BLAST* architecture; however, only a maximum 
of 64 bits can be burst to or from the NM 000 Accelerator. 

W/R* Host Write or Read. Driven by the host on the same rising clock edge as 
ADS#, CS#, and BLAST*, to indicate that the current bus cycle is a write 
(high) or read (low). 

RDY# NMOOO 
Accelerator 

Non-Burst Ready. When asserted by the Accelerator, this signal 
indicates that the data on D[0:63] is valid (for output) or accepted (for 
input) and that it is the last data transfer in the current bus cycle. The 
signal terminates the bus cycle. For a burst cycle, RDY* is only 
asserted on the last transfer of the burst. 

BRDY# NMOOO 
Accelerator 

Burst Ready. When asserted by the Accelerator, this signal indicates 
that the data on D[0:63] is valid (for output) or accepted (for input) and 
that more data may be transferred in the current burst bus cycle. The 
signal does not terminate the current bus cycle. The Accelerator cannot 
pull this signal high. 

BERR# NMOOO 
Accelerator 

Bus Error. When asserted by the Accelerator, this signal indicates that 
illegal bus-definition conditions have occurred. For example, the host 
may attempt to write to the input buffer when the Accelerator is not in an 
appropriate mode or when the buffer is full, or the host may attempt to 
access the output buffer before data is available. The signal also 
terminates the current bus cycle. This signal is open collector. 

64/32# Host 64-Blt or 32-Blt Data Bus. Driven by the host to select 64-bit (high) or 
32-bit (low) operation on the D[0:63] bus. Data alignment is described in 
Section 4.1. 

MC# Host Microcontroller. Asserted by the host on the same rising clock edge as 
ADS* and CS# to read or write the Accelerator's microcontroller-program 
memory (PGFLASH). 
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Figure 4-2. I/O Register Read or Write By Host 

4.2.2.     PGFLASH Read or Write 

The PGFLASH can be read or written by the host in single (non-burst) cycles when the 
Accelerator is operating in one of the two PG hardware-controlled access modes. Figure 4-3 
shows a PGFLASH read cycle followed by a PGFLASH write cycle. The PGFLASH is 
accessed at addresses FOOOh through FFFFh. 

Figure 4-3 shows a PGFLASH read or write cycle initiated by the host. In a read cycle the 
host begins by driving ADS#, CS#, the address, W/R#, and BLAST#. Six clocks later,' the 
Accelerator places the data on D[0:31] and asserts RDY#. In a write cycle, the Accelerator 
samples the data and asserts RDY# two clocks after the host begins the cycle. 

The protocol for reading and writing PGFLASH is the same as for reading and writing an I/O 
register; however, the timing of reads in the PGFLASH is three clocks longer than for an I/O 
register, and the timing of writes is one clock shorter, as evident from Figure 4-2 and 4-3. 
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Figure 4-3. PGFLASH Read or Write By Host 

4.2.3.     IRAM Non-Burst Write 

The IRAM can be written by the host in single (non-burst) or burst cycles while the Accelerator 
is operating in the NORMAL hardware-controlled access mode. IRAM is accessible at 
address 2000h. When writing input vectors into IRAM for classification, the BERR# signal will 
be asserted if the host attempts to write more data than specified in the DIM register. See 
Chapter 5 for details. 

Figure 4-4 shows two sequential single (non-burst) writes to the IRAM. The timing is identical 
for both writes, and is also identical to the timing for PGFLASH writes: two clocks after the 
host starts the cycle, the Accelerator samples the data and asserts RDY# to terminate it. 
Burst writes to the IRAM are shown in Figure 4-6. 
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Figure 4-4. IRAM Non-burst Write By Host 

4.2.4.     ORAM Non-burst Read 

The ORAM can be read by the host in single or burst cycles while the Accelerator is operating 
in the NORMAL access mode. The ORAM external output port is accessed at address 2800h. 

Figure 4-5 shows two types of single (non-burst) ORAM reads. The first read occurs when the 
ORAM has just been filled with classification results. The cycle takes five clocks to complete, 
which is two clocks longer than a read that occurs when the ORAM has been previously 
accessed (i.e., not just filled with classification results). Burst reads of the ORAM are shown 
below in Figure 4-7. 
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Figure 4-5. ORAM Non-Burst Read By Host 

4.2.5.     IRAM Burst Write 

Figure 4-4 showed a single write to the IRAM. Figure 4-6, shows a four-transfer burst write to 
the IRAM. In burst cycles, the Accelerator asserts BRDY# instead of RDY# to indicate each 
successful data transfer in the multi-transfer sequence. Unlike RDY#, BRDY# does not 
terminate the cycle. 

The host begins the cycle with BLAST* deasserted. It keeps BLAST* deasserted through the 
third transfer, indicating to the Accelerator that these transfers are not expected to be the last 
transfer of the cycle (i.e., that this will be a burst cycle). In response, the Accelerator holds 
BRDY# asserted from the first data transfer through the last transfer (although RDY# can be 
substituted for BRDY# in the last transfer). The end of the cycle occurs when the host asserts 
BLAST* while the Accelerator asserts either BRDY* or RDY*. 

The Accelerator can accommodate vectors with up to 222 dimensions, at one byte per 
dimension. 
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Figure 4-6. IRAM Burst Write By Host 

4.2.6.     ORAM Burst Read 

Figure 4-5 previously showed the single (non-burst) read to the ORAM. Figure 4-7, below, 
shows a four-transfer burst read of the ORAM. As in burst cycles that access IRAM, the 
Accelerator asserts BRDY# instead of RDY# to indicate each successful data transfer in the 
multi-transfer sequence. 

Figure 4-7 shows a burst read to a newly filled ORAM. The host begins the cycle with 
BLAST# deasserted. It keeps BLAST* deasserted through the third transfer, indicating to the 
Accelerator that these transfers are not expected to be the last transfer of the cycle (i.e., that 
this will be a burst cycle). In response, the Accelerator holds BRDY# asserted from the first 
data transfer through the last transfer (although RDY# can be substituted for BRDY# in the 
last transfer). The end of the cycle occurs eight clocks later when the host asserts BLAST* 
while the Accelerator asserts either BRDY# or RDY#. 
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Figure 4-7. ORAM Burst Read By Host 

4.2.7.     Reset 

As described in Section 4.1, all or parts of the NHOOO Accelerator can be reset by the host 
asserting RESET* or MC#, or by the host writing a 1 to bit 15 of the CMR register. Figure 4-8 
shows the cycle. Once reset, the Accelerator can only be brought back to normal operation by 
the host writing a 0 to bit 15 of the CMR register (not shown in Figure 4-8), provided that MC# 
is not asserted and RESET* is deasserted. 

The top half of Figure 4-8 shows that, when RESET* is asserted while MC* is deasserted at 
the rising edge of CLK, the entire Accelerator is reset, which includes the external bus 
interface, PGFLASH, and other internal logic. When RESET* is deasserted, all units remain 
reset except the external bus interface, since this interface is reset only when RESET* is 
asserted. When MC* is asserted, PGFLASH is no longer in reset condition, but the other 
internal logic remains reset. When MC* is deasserted, PGFLASH re-enters the reset 
condition. 

The bottom half of Figure 4-8 shows that when MC* is asserted while RESET* is deasserted 
at the rising edge of CLK, only the internal logic is reset, not including PGFLASH. The 
external bus interface is reset when RESET* is held low. When MC* is deasserted, 
PGFLASH enters the reset condition. Other internal logic remains reset throughout the cycle. 
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OPERATION 

The Nil000 has three access modes established by the host by controlling I/O pins; Normal 
mode, PG mode and Reset Mode. 

1. NORMAL mode established by CS# = 0, MC# = 1, and RESET* = 1 is used for 
Classification, Learning and general housekeeping. 

2. PG mode or PGFLASH ACCESS mode established by CS# = 0, MC# = 0, and 
RESET* = 1 is used to load and save PGFLASH. 

3. RESET mode established by RESET* = 0 resets the Nil000 and suspends precharging 
and most latching. 

The Microcontroller software that implements several classification algorithms, controls the 
chip and communicates with the host, is available with the Nil000. Custom programs for the 
Microcontroller can also be written using the Microcontroller instruction set provided. 

The host-to-Microcontroller communication is mediated through the I/O unit: the I/O registers, 
the IRAM, and the ORAM. With the exception of accessing PGFIash, all communication with 
the Nil000 is in NORMAL mode. 

This section discusses the low level operation and programming of the Ni1000. Adherence to 
the guidelines given below is necessary to achieve reliable performance and avoid damage to 
the Accelerator. 

General Programming and Operational Guidelines: 

1. After power up, the Accelerator is in 'reset' state internally, even if the RESET* signal is 
deasserted. The host must activate the Accelerator (release from the reset state) by 
writing a 0 to CMR[15] before any operation is attempted. 

2. After the Accelerator is activated (by writing a 0 to CMR[15]), Microcontroller code starts 
execution at location 1 in the PGFLASH (address F001h). 

3. PGFLASH must contain a valid Microcontroller program before use. Otherwise, the 
Microcontroller may cause unexpected results or be damaged. 

4. After changing from the PG to the NORMAL access mode, activate the Accelerator by 
writing a 0 to CMR[15] after MC* is deasserted. 

5. All volatile memories (RAMs, registers) are undefined after power on and after switching 
between NORMAL and PG modes. 

6. Data in PPRAM are valid as long as RESET* is deasserted and power is up. PPRAM 
data may be lost after switching into PG mode. 

7. Always activate IRAM and ORAM before use, by writing a 0 to CRB[0] and CRB[1], 
respectively. 

8. When interfacing with or modifying the Microcontroller software, the Protocol rules in 
Chapter 7, Microcontroller Software, supersede any conflicting rules (e.g. #5 & #7, 
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above), since the rules in this section refer to the native chip and the user-visibility 
can be modified using microcontroller code. 

In addition to the three access modes described previously for the entire Accelerator each 
logic block (see Table 4-1), has its own register-controlled or software-controlled modes 
These software-controlled modes determine the state of the blocks and the functions they can 
support. Accessing the software-controlled modes is accomplished by writing to appropriate 
registers associated with each logic block. 

Table 5-1 summarizes the software-controlled modes for the relevant logic blocks, along with 
the register values for the corresponding modes. Usually, setting the software-controlled 
mode is one of many steps in the operation of a logic block. See Sections 5.1.3, 5.1.4, and 
5.1.6 through 5.1.8 for the sequences of instructions. 

Table 5-1. Logic Block Mode Configuration 

LOGIC BLOCK MODE REGISTER VALUES WRITTEN BY 
I/O,  IRAM& ORAM RESET 

CLASSIFY 
MC (Microcontroller) 

CMR[15]=1 
CRB[6] = 1 
CRB[6] =0 

HOST or M/C 
HOST or M/C 
HOST or M/C 

PPRAM IDLE 
CLASSIFY 
MC (Microcontroller) 

PPRAM CR = 0h 
PPRAM_CR = 4000h 
PPRAM_CR = 8000h 

Microcontroller 
Microcontroller 
Microcontroller 

MURAM CLASSIFY 

MC (Microcontroller) 

MURAM CR Bit = 1 and 
bits[2:5] = 1000h 
MURAM_CR =0000h 

Microcontroller 

Microcontroller 

PADCU DISABLED 
CLASSIFY 
MC (Microcontroller) 

CSA = 0000h & CSB = 0000h 
CSA = 6000h & CSB = 6000h 
CSA = 8000h& CSB = 8800h 

Microcontroller 
Microcontroller 
Microcontroller    | 

I/O = IRAM, ORAM, and I/O Registers 
M/C = Nil 000 on-chip Microcontroller 
MURAM = Math Unit RAM 
PPRAM = Prototype Parameter RAM 
PADCU = Prototype Array and Distance Calculation Unit 

5.1.     I/O TO AND FROM HOST 

Input and output between the host and Nil000 while in NORMAL access mode utilizes the 
I/O registers, IRAM and ORAM. Table 5-2 shows the I/O Register Map. 
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Table 5-2. /O Register Map 

Address 
(Hex) 

Name Host 
W/R 

MC 
W/R 

Description 

0000 CMR W/R R Chip Mode Register. 

0008 DIM W/R W/R Vector Dimension Register. 

0010 IDR R R Chip ID Register. 

0018 SSR W/R W/R Software Status Register. 

0020 HS1 R R Hardware Status Register 1. 

0028 HS2 R R Hardware Status Register 2. 

0030 XIR R W/R External Interrupt Register. 

0038 IIR W/R R Internal Interrupt Register. 

0040 CRA W/R W/R Control Register A. 

0048 CRB W/R W/R Control Register B. 

0050 OP0 W/R W/R General-purpose operand register 0. 

0058 OP1 W/R W/R General-purpose operand register 1. 

0060 OP2 W/R W/R General-purpose operand register 2. 

0068 OP3 W/R W/R General-purpose operand register 3. 

0070 OP4 W/R W/R General-purpose operand register 4. 

0078 OP5 W/R W/R General-purpose operand register 5. 

5.1.1.     I/O Registers 

The 16-bit I/O registers occupy addresses 0000h to 0078h in the memory. They can be read 
by both the host and the Microcontroller, but not all bits in all registers can be written. Their 
functions include: 

• Control the operating mode of the IRAM and ORAM. 
• Provide a location from which to read the hardware status signals. 
• Provide communication between the host and the Microcontroller, which includes host 

commands to the Microcontroller, or input/output parameters between the host and the 
Microcontroller. 
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5.1.1.1.  CMR (Chip Mode Register) 

This 16-bit register is generally used to input commands from the host to the Microcontroller. 
The Microcontroller must not write to this register. A write by the host sets IIR[15], which 
causes an internal interrupt to the Microcontroller if the Interrupt Enable flag (HS1[6])' is set. 
When this happens, the interrupt request flag, IR, is set and visible to the Microcontroller. 
Figure 5-1 shows the register, followed by its bit assignments. 

Register: CMR 

Address (hex):    0000 

Bit Assignment: 

15      14 

Command Opcode 

Chip Reset Bit 

 _ Nil 000-04: 
Figure 5-1. The CMR Register 

bits [0:14] Command Opcode 
(read and write by host or Microcontroller) 
User command opcode. The opcode is interpreted by the Microcontroller 
software. 

bit 15 Chip Reset 
(read and write by host or Microcontroller, initialized to 1 upon chip reset.) 
1 = Accelerator is reset. This bit is also set when the RESET* or MC# pin is 

asserted. 
0 = Accelerator is not reset. The value can be written only by the host. 

5.1.1.2. DIM (Dimension Register) 

This 16-bit register contains the number of features (0-255) and the desired number of classes 
(0-63) in PRCE output. Both the host and the Microcontroller can read from and write to this 
register with no immediate side-effects. However, the value in the register must be stable 
before and throughout the classification process. Figure 5-2 shows the register followed by 
its bit assignments. 
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Register 

Address (hex): 

3H Assignment 

15                  13 

DIM 

0008 

8 7 0 

Unused Desired # of Classes -1 Input Vector Dimension -1 

Nil 000-044 

Figure 5-2. The DIM Register 

bits [0:7] Number of Input Features 
(read and write by host or Microcontroller) 
The number of input features per input vector. The number to be entered 
here is the actual number of features minus 1. 

bits [8:13] Number of Output Classes 
(read and write by host or Microcontroller) 
The desired number of classes for PRCE output. The number to be entered 
here is the number of desired output classes minus 1. 

bäs [14:15] Reserved. 

5.1.1.3. IDR (ID Register) 

This 16-bit register is read-only by both the host and the Microcontroller and hard-coded with 
the value 315Bh.  It is the chip identification.  Figure 5-3 shows the register. 

Register: 

Address (hex): 

Bit Assignment: 

15 

IDR 

0010 

0 

315Bh 

NI1 000-04! 

Figure 5-3. The IDR Register 

5.1.1.4.  SSR (Software Status Register) 

This 16-bit register is intended to reflect the status of the microcontroller's software. Although 
the host could write this register, the intention is that it should only be written by the 
microcontroller. It has no effect on the Accelerator's operation.  Figure 5-4 shows the register. 
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Bit-assignments must be defined in the Microcontroller's program. For how it is used in the 
standard Microcontroller program that is shipped with the chip, see Chapter 7, Microcontroller 
Software. 

Register SSR 

Address (hex): 0018 

Bit Assignment 

Not pre-defined. Meanings determined by active microcode. 

Nil 000-046 

Figure 5-4. The SSR Register 

5.1.1.5. HS1 ( Hardware Status Register 1) 

This 16-bit register is used to store the states of the microcontroller's flags, which are sampled 
at each clock cycle. It is intended to be read by the host. Reading of this register by the 
Microcontroller is less efficient than using the built-in Microcontroller flag-testing instructions. 
CSW is the Microcontroller flag register. See Section 5.4.1 for its bit assignments. Figure 5-5 
shows the HS1 register, followed by its bit assignments, which are identical to that of CSW 
Microcontroller flags are not the only flags that are used by the Accelerator. PPRAM 
(Prototype Parameter RAMs) have Used and Disabled flags, and DCUs also have Used flags 
See Section 5.1.6 and 5.1.7 for details. 
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Register: HS1 

Address (hex):    0020 

Bit Assignment: 

15      14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved °o 
M 
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S 
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I 
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T 
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O P N Z c 

Nl 1000-04 

Figure 5-5. The HS1 Register 

All bits are read-only by both the host and the Microcontroller. 1 = set, 0 = clear. 

bitO C Carry 
bitl z Zero 
bit 2 N Negative 
bit 3 P Positive 
bit 4 O Overflow 
bit 5 IR Interrupt Request 
bit6 IE Interrupt Enable 
bit 7 SE Stack Error 
bit 8 GE General Error 
bit 9 MC Multi-Class Firing 
bit 10 FW FLASH-Write 
bit 11 M1 MURAM1 Ready 
bit 12 M2 MURAM2 Ready 
bit 13 DC PADCU Busy 
bit 14 Reserved 
bit 15 Reserved (always cleared to 0) 

5.1.1.6. HS2 (Hardware Status Register 2) 

This 16-bit register is used to indicate the status of the hardware units other than the 
Microcontroller. Bits 10 through 15 are particularly important, since they indicate the mode of 
the Accelerator and the full or empty status of IRAM and ORAM. They should be checked by 
the host before loading input vectors for classification, and before reading classification 
results. Figure 5-6 shows the register, followed by its bit assignments. 
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Register: HS2 

Address (hex):     0028 

Bit Assignment: 

15 6 3 2 1 0 

0 

Figure 5-6. The HS2 Register 
Ni1000-04( 

MO 

bitl 

bit 2 
bits [3:6] 

bit 7 

bit 8 

bit 9 

bit 10 

PADCU Busy 
(read-only by host) 
1 =        PADCU is busy. 
0 =        PADCU is not busy. 
Mil Busy 
(read-only by both the host and the Microcontroller) 
1 = MU is busy 
0 =        MU is not busy. 
Complement of SRQ# Output 
Last I/O Register Written 
(read-only by both the host and the Microcontroller) 
Contain bits [3:6] of the address of the last I/O register written, either by the 
Microcontroller or host. Reading HS2 and masking its value with 0078h 
yields the last I/O register into which data was written. This provides 
communication between the host and the Microcontroller 
64/32# Status 
(read-only by both the host and the Microcontroller) 
1 = Host data bus is 64-bit. 
0 =        Host data bus is 32-bit. 
MULTICHIP« Status 
(read-only by both the host and the Microcontroller) 
1 =        The MULTICHIP* is asserted. 
0 =        The MULTICHIP# is deasserted. 
Multiple Firing Classes 
(read-only by both the host and the Microcontroller) 
1 =        ORAM contains multiple firing classes. 
0 = ORAM does not contain multiple firing classes 
ORAM Fully Read 
(read-only by both the host and the Microcontroller) 
1 =        ORAM has been fully read by the host. 
0 =        ORAM has not been fully read by the host. 
This bit is necessary because multiple data transfers may be needed to read 

all of the data in ORAM. 
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bit 11 IRAM FullyWritten 
(read-only by both the host and the Microcontroller) 
1 = IRAM has been fully written by the host. 
0 = IRAM has not been fully written by the host. 

This bit is necessary because multiple data transfers may be 
needed to write all of the data into IRAM. 

bit 12 ORAM Mode 
(read-only by both the host and the Microcontroller) 
1 =        ORAM is in Classify mode. The host can read ORAM if it is 

not empty. 
0 =        ORAM is in Microcontroller mode. The        Microcontroller can 

access (read and write) ORAM. Any read    attempt by the host is 
illegal and causes the Accelerator to assert BERR#. 

bit 13 IRAM Mode 
(read-only by both the host and the Microcontroller) 
1 = IRAM is in Classify mode. The host can write to        IRAM if it is 

not full. 
0 =        IRAM is in Microcontroller mode. The Microcontroller can access 

(read and write) IRAM. Any write attempt by the host is illegal and 
causes the Accelerator to assert BERR#. 

bit 14 ORAM Full 
(read-only by both the host and the Microcontroller) 
1 = ORAM is full. The host can read ORAM if bit 12 has value 1. 
0 =        ORAM is not full. Any read attempt by the host is illegal and causes 

the Accelerator to assert BERR#. 
bit 15 IRAM Full 

(read-only by both the host and the Microcontroller) 
1 = IRAM is not full. The host can write another vector to IRAM if bit 13 

has value 1. 
0 = IRAM is full. Any write attempt by the host is illegal, and causes the 

Accelerator to assert BERR#. 

XIR (External Interrupt Register) 

This 16-bit register is used to identify the reason for a service request from the Microcontroller 
to the host. It can be written only by the Microcontroller and is intended to be read by the 
host. A special value of FFFFh indicates that ORAM is full. The Microcontroller initiates a 
service request by writing to XIR. As a result, the Service Request pin ,SRQ#, is asserted and 
stays that way until the host asserts the interrupt acknowledge pin, IACK#. 

Figure 5-7 shows the register. There are no specific bit assignments for the XIR register. The 
host and the Microcontroller should follow the same convention to code or decode its 
contents. For how it is used in the standard Microcontroller program that is shipped with the 
chip, see the Chapter 7, Microcontroller Software. 
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Register: XIR 

Address (hex):    0030 

Bit Assignment: 

15 

Defined in User Program 

Figure 5-7. The XIR Register 
NI1000-04! 

5.1.1.7. IIR (Internal Interrupt Register) 

This 16-bit register is used to identify the reason for an interrupt request from the host to the 
Microcontroller. It can only be written by the host. However, the Microcontroller responds to 
this interrupt only when its interrupt-enable (IE) flag is set. The contents of IIR may be 
changed by on-chip hardware conditions, such as the loading of the CMR register, or the 
assertion of the MCINT# pin by the host. Each bit position represents a different hardware 
condition, except that IIR[2:3] may be used by host software to specify the reason for an 
interrupt. The value in IIR is only an interrupt identifier, not an interrupt vector (see Section 
5.2.7 for interrupt handling). Figure 5-8 shows the register, followed by its bit assignments. 

Register: IIR 

Address (hex):     0038 

Bit Assignment: 

15      14 

Reserved Reservec 

Figure 5-8. The IIR Register 
Nil 000-05 ) 

bitO 

bitl 

bits [2:3] 
bits [4:14] 

MCINTX Status 
(read and write only by host) 
1 =        The MCINT# pin is asserted by the host. 
0 =        The MCINT# pin is deasserted 
ERROFW Status 
(read and write only by host) 
1 =        The ERROR* pin is asserted by the host. 
0 =        The ERROR* pin is not asserted. 
Reserved. 
Reserved 
(Always reads zero.) 
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bit 15 CMR Written 
(read-only by host) 
1 =        The CMR register has been written by the host. 
0 =        The CMR register has not been written by the host. 

5.1.1.8. CRA (Control Register A) 

This 16-bit register is used by the host to monitor and control the behavior of the IRAM and 
ORAM when the Accelerator is operating in Classify mode. However, it can be written by both 
the host and the Microcontroller. Figure 5-9 shows the register, followed by its bit 
assignments. 

Register: CRA 

Address (hex): 0040 

Bit Assignment: 

15 4        3        2 1 0 

Reserved 

Reserved 

NI1000-05 

Figure 5-9. The CRA Register 

bit 0       ORAM Mode 
(read and write by both the host and the Microcontroller) 
(Changing the value of this bit initiates an internal reset of the ORAM, 
followed by re-activation; HS2[14] is cleared to 0 to mark ORAM empty.) 
1 =        Results  from   MURAM   are   automatically   loaded   into   ORAM 

whenever ORAM is empty. 
0 =        Results from MURAM are not automatically loaded into ORAM 

when ORAM is empty.. 
bit 1       RCE/PRCE 

(read and write by both the host and the Microcontroller) 
(Changing the value of this bit initiates an internal reset of the ORAM, 
followed by reactivation; HS2[14] is cleared to 0 to mark ORAM empty.) 
1 =        Results from MURAM are PRCE results, probability densities. 
0 = Results from MURAM are RCE results, firing class IDs. 

bit 2       ORAM Service Request 
(read and write by both the host and the Microcontroller) 
(Initialized to 1 upon chip reset.) 
1 =        The SRQ# pin will not be asserted and FFFFh will not be loaded 

into XIR when ORAM becomes full. 
0 =        The SRQ# pin will be asserted when ORAM becomes full and 

FFFFh will be loaded into the XIR register.   ORAM full is indicated 
byHS2[14] = 1. 

bits [3:15] Reserved 
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5.1.1.9.  CRB (Control Register B) 

This 16-bit register is used to control the software modes of the ORAM and the IRAM. It is 
written by the Microcontroller. Figure 5-10 shows the register, followed by its bit assignments. 

Register: CRB 

Address (hex):    0048 

Bit Assignment: 

15                 13 12 11 10 9                    7 3       2 1 0 

Reserved Reserved Reserved 

Figure 5-10. The CRB Register 
NM 000-05:: 

bit 0 IRAM Reset 

(read and write by both the host and the Microcontroller) 
(Initialized to 1 upon chip reset.) 
1 =        IRAM is reset. 
0 = IRAM is active. The value must be written to bring IRAM out of 

reset. 
bit 1 ORAM Reset 

(read and write by both the host and the Microcontroller) 
(Initialized to 1 upon chip reset.) 
1 =        ORAM is reset. 
0 =        ORAM is active. The value must be written to bring ORAM out of 

reset. 
bits [2:3] Reserved 
bit 4 Floating-Point Conversion 

(read and write by both the host and the Microcontroller) 
(Initialized to 1 upon chip reset.) 
1 =        ORAM converts the PRCE probabilities obtained from MU into 

IEEE-754 32-bit format. 
0 =        PRCE data read out of the ORAM are in the MU internal 16-bit 

format. 
bit 5 ORAM Mode 

(read and write by both the host and the Microcontroller) 
(Initialized to 1 upon chip reset.) 
1 =        ORAM is in the Classify mode. 
0 =        ORAM is in the Microcontroller mode. 
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bit 6 

bits [7:9] 
bit 10 

bit 11 

bit 12 

bits [13:15] 

IRAM Mode 
(read and write by both the host and the Microcontroller) 
(Initialized to 1 upon chip reset.) 
1 =       IRAM is in the Classify mode. 
0 =        IRAM is in the Microcontroller mode. 

Reserved. 
IRAM1 Full 

(read and write by both the host and the Microcontroller) 
1 =        IRAM1 is full. 
0 = IRAM1 is not full. 

IRAM2 Full 
(read and write by both the host and the Microcontroller) 
1 =       IRAM2 is full. 
0 = IRAM2 is not full. 

ORAM Full 
(read and write by both the host and the Microcontroller) 
1=        ORAMisfull. 
0 = ORAM is not full. 

Reserved 

5.1.1.10. OP[0:5] (General Operand Registers) 

These six 16-bit registers are storage locations used to pass parameters between the host and 
Microcontroller. They have no side-effects on hardware when written. Conventions for using 
these registers must be established and followed by both the host and the Microcontroller. For 
how they are used in the standard Microcontroller program that is shipped with the chip, see 
the Chapter 7, Microcontroller Software. Figure 5-11 shows the register. The bit assignments 
are defined in the user program. 

Register: OPO-5 

Address (hex):     0O50. 0058, OO60, 0068, 0O70, 0078 

Bit Assignment: 

15 

Defined in User Program 

Nil 000-05: 

Figure 5-11. The OP Registers 
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5.1.2.     IRANI 

IRAM is a double buffer consisting of two alternating 256 x 5-bit banks, IRAM1 and IRAM2. 
Each bank can store one input vector with up to 256 stored features (up to 222 input features). 
IRAM has three software-controlled modes: 

. Reset—This mode prohibits both the host and the Microcontroller from accessing IRAM. 
The mode is set by the host by writing a 1 to CMR[15], or by either the host or the 
Microcontroller by writing a 1 to CRB[0]. See Section 3.5.8 for required initialization 
before clearing the reset bit for normal operation. 

• Classify—This mode allows the host to write into IRAM. The mode is set by the host by 
writing a 1 toCRB[6]. 

• Microcontroller—This mode allows the Microcontroller to write into or read from 
IRAM. The mode is set by the host by writing a 0 to CRB[6]. 

Instruction sequences for host and Microcontroller access to IRAM are given in Section 5.3.1. 
IRAM access addresses in the Microcontroller mode are shown in Table 5-3. 

Table 5-3. IRAM Access Addresses in Microcontroller Mode 

Location Starting 
Address 

Ending 
Address 

# of Addresses Resolution of 
Data 

IRAM1 Readable 
Addresses 

20O0h 20FFh 256 5 bit 

IRAM2 Readable 
Addresses 

2100h 21FFh 256 5 bit 

IRAM1 Latchable 

(Pre-Write) Addresses 

2000h 20FFh 8 
(3 least-significant 
address bits 
determine position) 

5 bit 
(5MSBsofthe/ow 
byte on the DBUS) 

IRAM2 Latchable 

(Pre-Write) Addresses 

2100h 21FFh 8 
(3 least-significant 
address bits 
determine position) 

5 bit 
(5 MSBs of the low 
byte on the DBUS) 

IRAM1 Writable Addresses 2400h 24FFh 32 
(higher address bits 
judge RAM row to be 
written) 

40 bits 
(written 
simultaneously) 

IRAM2 Writable Addresses 2500h 25FFh 32 
(higher address bits 
determine RAM row 
to be written) 

40 bits 
(written 
simultaneously) 

The latchable (pre-write) addressing scheme is created because of the specialized nature of 
the IRAM.   Since the external data bus is 64-bit wide and the internal data bus 16-bit wide 
multiple writes are required for internal data bus access.   Figure 5-12 gives a more graphical 
explanation for this. 
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I         I         I          I          I          I         I Pre-Write Latches 

i k 11111 
ik 

32-Row 
SRAM 

(A7, A6, A5, A4, A3) 

i ' 

1 ' 00000 

NM 000-05. 

Figure 5-12. IRAM Pre-Write Latch Scenario 

The bit assignments corresponding to Figure 5-12 are given in Figure 5-13. 

Mode Selection Row Selection 

h—H   h H 
15       14    "13    "12    "11     "10        9 8 7 6 5 4      ^3      ^2      ^1       ^0 

H H t I« H 
Block Selection VRAM Selection Nibble Selection 

Figure 5-13. IRAM Address Assignment 

Writing to the IRAM involves first writing to a set of latches. The contents of these latches 
may eventually be written into the IRAM itself, but the operation must be explicitly ordered. 
You may always choose to use the writable addresses, in which case some unwanted data 
may be written into other memory locations on that line of the RAM. Due to the orientation of 
the block, you must write 8 times to ensure that a line in the IRAM contains valid data. 

When the host loads data into IRAM in Classify mode, each feature of the input vector is byte- 
aligned high.   Only the upper 5 bits of each byte are used.   The lower 3 bits are ignored. 
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Figure 5-14 and 5-15 show the data alignments for 32-bit and 64-bit external  buses, 
respectively. 

(MSB)  dddddxxx dddddxxx dddddxxx ddddxxx     (LSB) 

d=vaKd data bit 

x=invBUdbit 

Figure 5-14. Data Alignment on 32-Bit External Bus 

NilOOO-056 

(MSB) dddddxxx dddddxxx dddddxxx dddddxxx 
dddddxxx dddddxxx dddddxxx dddddxxx 

d=valid data bit 
x=invalid bit 

(LSB) 

Nil 000-057 

Figure 5-15. Data Alignment on 64-Bit External Bus 

When the Microcontroller accesses IRAM (read or write), data appear in the most significant 5 
bits of the least significant byte, as shown in Figure 5-16. 

(MSB) xxxxxxxx dddddxxx    (LSB) 

d=valid data bit 
xNnvaEd bit 

Figure 5-16. Internal Bus Data Alignment 

5.1.3.     IRAM Read and Write by the Microcontroller 

The host writes input vector components to IRAM for classification in the following steps: 

1.    Write to the following registers: 

Register Address (hex)        Data 

CRB[0] 0048 0 

CRB[6] 0048 0 

Description 

Unreset IRAM. 

Set IRAM to Microcontroller mode. 
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Read from addresses 2000h to 21FFh, or write to addresses 2400h through 25FFh. Valid 
data appear as the most significant 5 bits of the least significant byte. 

5.1.4.     IRAM Write by the Host 

1.    Write to the following registers: 

Register Address(hex) Data 

CRB[0] 0048 0 

CRB[6] 0048 1 

DIM[0:7] 0008 input 

Description 

Unreset IRAM. 

Set IRAM to Classify mode. 

input vector   The lower byte of DIM  holds the 
features number  of  input  vector  features 

minus 1. 

2. Write an input vector to address 2000h, which can have up to 222 input features (in up to 
256 input bytes). Each feature is byte-aligned high and only uses the upper 5 bits of each 
byte for data. The first feature value in each group of 8 must be set to 0 and the last two 
feature values (#254 and #255), if used, must be set to 0. High-features are written first, 
padded with empty (all 0s) bytes if necessary. Each write contains data for 4 (8) features 
if the 64/32# signal is asserted (deasserted). 

3. Repeat step 2 until the data for all features of the vector are written. 

For example, writing a vector with 5 features to IRAM on a 32-bit bus (64/32# asserted) will 
result in the following memory storage: 

Input   Vector   Dimension    Bit Pattern 

dddddxxx 

dddddxxx 

dddddxxx 

dddddxxx 

dddddxxx 

dddddxxx 

OOOOOxxx 

OOOOOxxx 

Address 
(hex) 

Input 
Numb 

2000 0 

2001 1 

2002 2 

2003 3 

2004 4 

2005 5 

2006 empty 

2007 empty 

d = valid data bit 
x = invalid data bit 
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The status of IRAM is indicated in the following ways: 

• A bus error occurs (the BERR# signal asserted) if a write to IRAM is attempted when both 
IRAMs are full. That is, the error will occur if the write is attempted while HS2[15] = 0. 

.     CRB[10] and CRB[11] show the status of IRAM1 and IRAM2, respectively: 
1 = The bank is full. 
0 = The bank is not full. 

• HS2[15] indicates the status of entire IRAM: 
1 = IRAM is not full, i.e., at least one full-size vector maybe written. 
0 = IRAM is full and cannot take more input vectors. 

• HS2[11] indicates whether data is being transferred into IRAM: 
1 = IRAM has been fully written by the host. 
0 = IRAM has not been fully written by the host and more transfers are required. 

5.1.5.     ORAM 

ORAM is a buffer 64-words deep and 16-bits wide.   It can hold all of the data generated by 
classifying an input vector. ORAM has three software-controlled modes: 

• Reset—This mode prohibits both the host and the Microcontroller from accessing ORAM. 
The mode is set by the host by writing a 1 to CMR[15], or by either the host or the 
Microcontroller by writing a 1 to CRB[1]. See Section 3.4.8 for the initialization that is 
required before clearing the reset bit for normal operation. 
Classify—This mode allows the host to read from ORAM. The mode is set by the host by 
writing a 1 to CRB[5]. 

• Microcontroller—This mode allows the Microcontroller to write into or read from ORAM. 
The mode is set by the host by writing a 0 to CRB[5]. 

Instruction sequences for host and Microcontroller access to the ORAM are given in Sections 
5.1.6 through 5.1.9.   ORAM access addresses in Microcontroller mode are shown in Table 

Table 5-4. ORAM Access Addresses in Microcontroller Mode 

Location Starting 
Address 

Ending 
Address 

Number of 
Addresses 

Resolution 
of Data 

ORAM Readable 
Addresses 

2800h 283Fh 64 
(One of 4 words 
in 16 rows) 

16 bit 

ORAM Latchable 

(Pre-Write) Addresses 

2800h 283Fh 1 
(the first block in the 
shift register) 

8 or 16 bits 
(selected with RCE#) 

ORAM Writable 
Addresses 

2C0Oh 2C3Fh 16 
(possible rows 
in the RAM) 

64 bits 
(written 
simultaneously) 
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The latchable (pre-write) addressing scheme exists because of the specialized nature of the 
ORAM. Figure 5-17 gives a more graphical explanation for this anomaly. The bit 
assignments corresponding to Figure 5-17 are given in Figure 5-18. 

Pre-Write 
Shift Register 

Nil 000-05! I 

._>-♦ uiw                                              p 

4—1                4-1               4-1  

ir                yr                  v                 ^r 

1 
16-Row 
SRAM 

I 

1111 

t 
(A5, A4, A3, A2) 

I 
0000 

Figure 5-17. ORAM Pre-Write Latch Scenario 

Mode Selection Row Selection 

h H        H H 
A       A       A.A       A       A        AAAAAAAAAA 

15       14       13       12       11        10        S 8 7 6 5 4 3 2 1 0 

k- -+I 
Block Selection Word Selection 

Ni1000-060 

Figure 5-18. ORAM Bit Assignment 

Writing to ORAM requires writing to a shift register first. The contents of this register may 
eventually be written into the static RAM itself. You may choose to always use the writable 
addresses, in which case some unwanted data may be written into other memory locations of 
the RAM. Due to the orientation of the block, you must write 4 times to ensure that a line in 
the RAM contains valid data. Any fewer write cycles may result in the desired data appearing 
close to but not at the desired memory location. 

When the host reads the classification results from ORAM, the output is one of those 
summarized in Table 5-5. 
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Table 5-5. ORAM Output Possibilities 

CRA[1] CRB[4] 64/32# Output 
(per bus cycle) 

Maximum Possible 
Number of Bus 

Cycles 

0 0 0 4 Classes 16 

0 0 1 8 Classes 8 

0 1 0 4 Classes 16 

0 1 1 8 Classes 8 

1 0 0 2 Unformatted 
Probabilities 

32 

1 0 1 4 Unformatted 
Probabilities 

16 

1 1 0 1 Formatted Probabilities 64 

1 1 1 2 Formatted Probabilities 32 

Class information is given in the format shown in Figure 5-19. The number of bytes output 
when class information is requested is determined by the number of firing classes, calculated 
by the math unit (MU). Regardless of the value of CRA[1], if the number of firing classes is 
greater than one, HS2[9] will be set to 1. 

(MSB) vcnnnnnn vcnnnnnn vcnnnnnn vcnnnnnn  (LSB) 

n=firing class # 

c=confidence bit (not meaningful on current rev of silicon) 
v=valid byte (valid if HIGH, invalid if LOW) 

Nil 000-061 

Figure 5-19. Format of RCE Classification Results 

Probabilities (actually probability densities) appear in one of the formats shown in Figure 5-20. 
The number of probabilities produced is determined by the number of desired classes which 
you specify in the high byte of the DIM register (bits 8 through 15). 
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IEEE Standard 
(32-bit) 

31   30                                     23 22 0 

S E F 

Interpretation: (-1)s x 2E'1!7 x (1 .F) 

Internat Format 
(16-bit) 

15                       10 9                                                    0 

E* F* 

Interpretation: 2E*x(OF*) 

where E* is Zs-complement 

Mapping: S=0 

E = E* + (5e)is, it E* is negative 

E = E* + (7e)i6, if E* is positive 

F = F X 40OOi« 
Nil 000-062 

Figure 5-20. Floating-Point Formats 

5.1.6.     ORAM Read and Write by the Microcontroller 

The host outputs classification results from ORAM in the following steps: 

1.    Write to the following registers: 

Register Address (hex)       Data 

CRB[1] 0048 0 

CRB[5] 0048 0 

Description 

Unreset ORAM. 

Set ORAM to Microcontroller mode. 

2.    Read from addresses 2800h through 283Fh, or write to addresses 2C00h through 2C3F, 
respectively. 
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5.1.7.     ORAM Read by the Host 

1.    Write to the following registers: 

Register Address(hex) Data 

CRB[1] 0048 0 

CRB[5] 0048 1 

CRA[0] 0040 1 

CRAJ1] 

CRB[4] 

DIM[8:15] 

0040 

0048 

0008 

0or1 

0or1 

desired 
class 
number 

Description 

Unreset ORAM. 

Set ORAM to Classify mode. 

Set ORAM to Classify mode. Enable 
loading results from MURAM when 
ORAM is empty. 

Select 0 for RCE firing classes as 
classification results. 
Select 1 for PRCE/PNN probability 
densities as classification results. 

Select 0 for 32-bit output format. 
Select 1 for 16-bit output format. 

The upper byte of DIM holds the 
desired number of classes for the 
probability calculation. 

2. Assert the 64/32# signal for 32-bit operation on data bus.   Deasserted 64/32# for 64-bit 
operation. 

3. Proceed to step 4 when data is available from ORAM, as indicated by CRBri21 = 1 or 
HS2[14] = 1. 

4. Read data from address 2800h.    See Section 5.1 for output types and floating-point 
formats. 

5. Repeat step 4 for more data until one of the following occurs: 

.     CRB[12] = 0 or HS2[14] = 0, indicating that ORAM has no more valid data. 
• The desired number of classes (for probabilistic results) is reached. 
• Invalid data bytes are encountered, for example, the MSB of a byte on the bus is zero 

for class IDs. Transmission must be terminated. 
• HS2[10] = 1, indicating that data transfer is completed. 

11/6/95 5-22 



NilOOO User's Guide 

5.1.8.     Retrieving Both Class and Probabilistic Data from ORAM by 
the Host 

If desired, both the firing class IDs and the probabilities may be retrieved from ORAM without 
reprocessing the data through the entire pipeline. This is accomplished by toggling bit 0 and 1 
of the CRA register as in the following: 

1.    Write to the following registers: 

Register Address (hex) Data Description 

CRA[0] 0040 0 Set ORAM to Microcontroller mode 

CRA[1] 0040 0 Select to first read firing-class IDs. 

2. Proceed to step 3 when data is available from ORAM, as indicated by CRB[12] = 1 or 
HS2[14] = 1. 

3. Read data from address 2800h, until there is no more data in ORAM, as indicated by 
CRB[12] = 0 or HS2[14] = 0. See Table 5-5 for number of outputs per bus cycle. 

4. Read and mask the following register: 

Register Address(hex) Data Description 

CRA[0] 0040 1 Set ORAM to Classify mode. 

CRA[1] 0040 1 Select probabilities as outputs 

5. Write the masked value back to CRA. 

6. Proceed to step 7 when data is available from ORAM, as indicated by CRB[12] = 1 or 
HS2[14] = 1. 

7. Read data from address 2800h, until there is no more data in ORAM, as indicated by 
CRB[12] = 0 or HS2[14] = 0. See Table 5-5 for number of outputs per bus cycle, and 
Figure 5-20 for floating-point formats. 

8. Read and mask the following register: 

Register Address(hex) Data Description 

CRA[0] 0040 0 Set ORAM to Microcontroller mode 

CRA[1] 0040 0 Select firing-class IDs as output. 

9. Write the masked value back to CRA. 

10. Repeat from step 2 for subsequent vectors. 
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5.2.     MICROCONTROLLER OPERATIONS 

The NilOOO utilizes a mapped memory scheme for access to all registers and memory 
locations. Access to the Microcontroller is accomplished via IRAM, ORAM and the I/O 
registers while the NilOOO is in NORMAL access mode. 

5.2.1.     Internal Mapped Memory 

Table 5-6 summarizes the memory and registers used in the NilOOO Accelerator The third 
column indicates whether the host can write and/or read the location. The fourth column 
indicates the same information for the Microcontroller (MC). A dash (-) indicates that the 
location is inaccessible. 
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Table 5-6. Memory and Register Address Map 

Address 
(Hex) 

Name Host 
W/R 

MC 
W/R 

Description 

I/O Registers 

0000 CMR W/R R Chip Mode Register. 

0008 DIM W/R W/R Vector Dimension Register. 

0010 IDR R R Chip ID Register. 

0018 SSR W/R W/R Software Status Register. 

0020 HS1 R R Hardware Status Register 1. 

0028 HS2 R R Hardware Status Register 2. 

0030 XIR R W/R External Interrupt Register. 

0038 IIR W/R R Internal Interrupt Register. 

0040 CRA W/R W/R Control Register A. 

0048 CRB W/R W/R Control Register B. 

0050 OPO W/R W/R General-purpose operand register 0. 

0058 OP1 W/R W/R General-purpose operand register 1. 

0060 OP2 W/R W/R General-purpose operand register 2. 

0068 OP3 W/R W/R General-purpose operand register 3. 

0070 OP4 W/R W/R General-purpose operand register 4. 

0078 OP5 W/R W/R General-purpose operand register 5. 

GRAM 

1000- 
10FF 

GRAM - W/R Microcontroller general purpose memory, 256x16k. 

TIMER 

1CO0- 
1C01 

TIMER - R Clock count. Low word in 1C00, high word in 1C01. 
Cleared upon reset. 
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IRANI 

2000 IRAM_HW W - I RAM host writable address. 

2000- 
20FF 

IR1_MCR - R IRAM1 Microcontroller readable addresses. 

- W IRAM1 Microcontroller byte-oriented pre-write latches. 
Data occupy the high 5 bits of each byte. 

2100- 
21FF 

IR2_MCR - R IRAM2 Microcontroller readable addresses. 

- W IRAM2 Microcontroller byte-oriented pre-write latches. 
Data occupy the high 5 bits of each byte. 

2400- 
24FF 

IR1_MCW - W IRAM1 Microcontroller writable addresses. 

2500- 
25FF 

IR2_MCW - W IRAM2 Microcontroller writable addresses. 

ORAM 

2800 ORAM_HR R - ORAM host readable address. 

2800- 
283F 

OR_MCR - R ORAM Microcontroller readable addresses. 

2C00- 
2C3F 

OR_MCW - W ORAM Microcontroller writable addresses. 

PADCU Registers 

3001 CSA - W/R PADCU Control and Status register. 

3002 MODE - W/R PADCU Mode register. 

3004 DCU_DIM 

" 

W PADCU Dimension register. It contains the number 
of features in the input vector. The value must be 
between 0 and 255, inclusive. 

3008 NCA W PADCU register that contains the number of 
committed prototype vectors. The value must be 
between 0 and 999, inclusive. 

3010 NCB - W PADCU register that contains the MU clock count. 

3020 AUX - W/R PADCU auxiliary register. 

3040 CSB - W/R PADCU control and status register. 

3200 ARR W/R PADCU Address Relocation register. Contains the 
lower-left position of the PA block in use. Value for 
starting row must be a multiple of 32, and column 
boundary must be a multiple of 128. 
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PPRAM and Registers 

4081 PPRAMCR3 - W/R PPRAM3 control register. 

4101 PPRAMCR2 - W/R PPRAM2 control register 

4201 PPRAMCR1 - W/R PPRAM1 control register 

4381 PPRAM_CR - W PPRAM global control register. It is used to write all 
three PPRAMs. 

4400- 
47FF 

PPRAM1 W/R For each prototype vector, this RAM holds a 6-bit 
class ID, a 1-bit confidence flag, a 1-bit Used flag, 
and an 8-bit smoothing factor (mantissa plus 
exponent). 

4800- 
4BFF 

PPRAM2 - W/R For each prototype vector, this RAM holds a 13-bit 
threshold radius and a 1-bit Disabled flag. 

5000- 
53FF 

PPRAM3 - W/R For each prototype vector, this RAM holds a 16-bit 
count of the number of times that vector fired in the 
final epoch of the training process. 

MURAMs and Registers 

6080 MURAM1 - R Firing class count for MURAM 1. 

60C0 MURAM2 - R Firing class count for MURAM2. 

6100 MURAM_CR - W/R MU mode-control register. 

6200- 
623F 

Flag MURAM - R 64 flags, used to indicate the firing classes for the 
current MURAM. Only the LSB is used. 

6400- 
643F 

Firing Class 
List MURAM1 

- W/R One of the two alternating 64x8-bit buffers, reserved 
for the class IDs of firing classes. 

6440- 
647F 

Firing Class 
List MURAM2 

- W/R One of the two alternating 64x8-bit buffers, reserved 
for the class IDs of firing classes. 

6800- 
683F 

Probability 
MURAM1 

~ W/R One of the two 64x16-bit buffers, used to accumulate 
the probability densities of the input vector for each of 
the 64 classes. 

6840- 
687F 

Probability 
MURAM2 

" W/R One of the two 64x16-bit buffers, used to accumulate 
the probability densities of the input vector for each of 
the 64 classes. 

PGFLASH Registers 

7700 PGF_DR W/R - PGFLASH data register. 

7701 PGF_CR1 W/R - PGFLASH control register 1. 

7702 PGF_CR2 W/R - PGFLASH control register 2. 

7703 PGF_SR R - PGFLASH status register. 

7704 PGF_ADR W/R - PGFLASH address register. 
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Prototype Array 

B000- 
B3FF 

B800- 
B8FF 

PNUM 

DCU Used 
Flags 

DCU 
Distances 

PDIM 

W/R 

W/R 

PNUM—Prototype number, which selects the 
prototype array column. The number must be 
between 0 and 999 inclusive. 
DCU Used Flags—: -bit (bit 13) flag for each of the 
1000 prototype vectors. DCU hardware operates on a 
prototype vector only when the corresponding flag is 
set. 
DCU Distances—1000 City Block distances between 
an input vector and each of the prototype vectors. 
Each distance is 13-bit and aligned low. 
PADCU registers, MODE and AUX, are used for 
selection. 

Prototype dimension, which selects the prototype 
array row (feature). The number must be between 0 
and 255, inclusive. 

PGFLASH 

F000- 
FFFF 

PGFLASH W/R Microcontroller program memory, 4Kx16-bit. The 
Microcontroller can only fetch instructions through 
Pdbus. The host can access PGFLASH only in PG 
mode. 

5.2.2.     PGFLASH 

PGFLASH (Program FLASH) is the Microcontroller-program memory, occupying addresses 
FOOOh through FFFFh in the memory space. It is non-volatile flash memory with a size of 4K 
x 16-bits. PGFLASH modes are set by the host writing to appropriate PGFLASH registers. 
See Section 5.2.3 for the instruction sequences. The modes are: 

Sfanctoy—Disable PGFLASH outputs and high voltage circuits. 
Read—Allow the host to read a 16-bit word from the FLASH array or one of the six 
registers. This is the default mode after reset. 
Erase—Erase the entire FLASH array by setting all bits to 1. 
Erase Verify—A read operation that allows the host to verify that all bits in the FLASH 
array have been erased correctly. 
Program—Allow the host to write a 16-bit word in the FLASH array by selectively clearinq 
bits toO. a 

Program Verify—A read operation that allows the host to verify that all bits in a 16-bit 
word have been programmed correctly in the FLASH array. 

PGFLASH can only be downloaded (programmed) or uploaded (read) by the host when the 
NilOOO is in PG access mode, which is entered by asserting the MC# signal. After 
programming and deasserting MC#, the Accelerator remains in reset mode until the host 
writes a 0 to CMR[15]. Downloading Microcontroller programs that exceed 4K x 16-bits in size 
will cause an error. 
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PGFLASH is programmed by accessing a set of registers listed in Table 5-7 and described in 
the following subsections. PGFLASH registers are used to store the address, data, control 
and status information. 

Table 5-7. PGFLASH Registers 

Address 
(Hex) 

Name Host 
W/R 

MC 
W/R 

Description 

7700 PGF_DR W/R - PGFLASH data register. 

7701 PGF_CR1 W/R - PGFLASH control register 1. 

7702 PGF_CR2 W/R - PGFLASH control register 2. 

7703 PGF_SR R - PGFLASH status register. 

7704 PGF_ADR W - PGFLASH address register. 

5.2.2.1. PGF_ADR (Address Register) 

This 12-bit register is used to store the address of the location to be read or written in 
PGFLASH. The register is write-only, and loaded automatically when the address is in the 
range between F000 and FFFF. Figure 5-21 shows the register. 

Register PGF_ADR 

Address (hex): 7704 

Bit Assignment 

11 0 

Nil 000-079 

Address 

Figure 5-21. The PGF_ADR Register 

5-29 11/6/95 



NMOOO User's Guide 

5.2.2.2. PGF_DR (Data Register) 

This 16-bit register is used to store the data to be programmed in the PGFLASH. Figure 5-22 
shows the register. 

Register: PGF_DR 

Address (hex):     7700 

Bit Assignment: 

15 

Data 

Figure 5-22. The PGF_DR Register 
NI1000-08II 

5.2.2.3.  PGF_CR1 (User Control Register 1) 

This 16-bit register is used to enable the software modes for PGFLASH. Figure 5-39 shows 
the register, followed by its bit assignments. 

Register: PGF_CR1 

Address (hex):     7701 

Bit Assignment: 

15 6 5 4 3 2 1 0 

Figure 5-23. The PGF_CR1 Register 

Reserved Reserved 

Nil 000-08- 
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PGF_CR1 Register 

Bit Name 
0 CDSTSEB 

1 CEROW 

2 CNWL 
3 CYNBL 
4 CWNBL 
5 CIROWB 

6 CLVPSB 
7 CESAMPB 

8 CREFRCEL 

9 CREGATE 
10 CSCRLOD2 
11 CIREF 

12 CHVPS 
13 CSCRSELB 
14 CPDDIS 

15 CEDIN 

Description 
Disables the pull down device on the array input node of the sense 
amplifier during VT, leaky column, program or program disturb 
operations. 
Ground all columns when PGFLASH is not selected and VPS is not 
high. 
Disable word lines during program disturb, standby and erase. 
Deactivates the YSEL signals during erase. 
Disables the WSEL signals during erase. 
Ground Imprint Columns when Imprint Columns not used and CIREF 
not active. 
Ground the Array VPS. 
Enable sense amplifiers except anytime VPX tracks VPP during 
margin mode. 
Gate single cell read reference to reference drain bias circuit or to 
sense node. 
Enable the gate of the single cell read and erase verify reference cells. 
Enable 2:1 load ratio for reference of sense amplifier. 
Inhibit source of Imprint Column when VPX is high voltage, except 
program verify and HTRB II modes. 
Bring the Array VPS to VPP during erase. 
Gates SCRs to reference sense node. 
Disables all column pulldowns during modes in which all columns 
must be floated or controlled. 
In program mode, enable data to be programmed. 
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5.2.2.4. PGF_CR2 (User Control Register 2) 

This 8-bit register is used to enable the software modes of PGFLASH.  Figure 5-40 shows the 
register, followed by its bit assignments. 

Register: PGF_CR2 

Address (hex):    7702 

Bit Assignment: 

7 0 

Reserved 

Figure 5-24. The PGF_CR2 Register 
NM ooo-oa: 

Bit 
0 
1 
2 

4 
5 

6 

7 

Name 
RESERVED 
CPGATE 
CREFPCEL 

CREFECEL 

CPGM 
CPGMVER7 

CPGMVER 

ADDREG1 

PGF_CR2 Register 

Description 
Reserved. 
Enable the gate of the single cell erase verify reference cell. 
Gate single cell program verify cell to reference drain bias circuit, or 
to sense node. 
Gate single cell program verify cell to reference drain bias circuit, or 
to sense node. 
Bring VPX and VPY to high voltage during programming. 
Enable VPX program verify generator to generate 7V during program 
verify. 
When CPGMVER7 is asserted, enable VPX program verify generator 
to generate 7.5V during program verify. 
Connect Address Register 1 to Address Mux. 
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PGF_SR (Status Register) 

This 5-bit register is used to determine the status of key internal signals of the PGFLASH core 
circuitry. Figure 5-25 shows the register, followed by its bit assignments. 

Register: PGF_SR 

Address (hex): 7703 

Bit Assignment: 

4 3 2 1 0 

NI1OOO-08: 

Figure 5-25. The PGF_SR Register 

bit 0 Ground detected on Vps for PGFLASH. 
bit 1 High voltage detected on Vpx. 
bit 2 High voltage detected on Vpy. 
bit 3 High voltage detected on Vpp. 
bit 4 Low voltage detected on Vcc. 

5.2.3.     PGFLASH Programming 

PGFLASH is the Microcontroller program memory. It can be programmed (downloaded) with 
Microcontroller programs only when the Accelerator is in the PG mode. The limitation on the 
size of the Microcontroller program is 4K x 16-bit. An error occurs when the size is exceeded. 
The software-controlled modes of PGFLASH are discussed in Section 5.2.2. The following 
instruction sequences give the steps to get into and out of various modes and the registers 
settings. 

5.2.3.1. Standby 

1. Write to the following registers to enable the Standby mode: 

Register Address (hex) Data (hex) 
PGF CR1 7701 2098 
PGF CR2 7702 0000 

Description 
Sets PGF_CR1 and PGF_CR2 to 
enable standby mode 
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5.2.3.2. Read 

1. Write to the following registers: 

Register Address (hex) Data (hex)       Description 
PGF_CR1 7701 0700 Set PGF_CR1  and 
PGF_CR2 7702 0086 PGF_CR2 to read mode 

2. Write the address to be read in address register PGF_ADR at address 7704h. 

3. Read PGFLASH data from data register PGF_DR at 7700h. 

4. Go back to step 2 for new address; or proceed to step 5. 

5. Enable Standby mode. 

5.2.3.3. Erase 

1. Write to the following registers: 

Register 
PGF_CR1 
PGF CR2 

Address(hex) 
7701 
7702 

2. Write to the following register: 

Register 
PGF CR1 

Address(hex) 
7701 

Data (hex) 
68BC 
0000 

Data (hex) 
78FC 

Description 
SetPGF_CR1  and 
PGF_CR2 to erase mode 

Description 
Starts erase 

3. Wait at least 2 milliseconds for erase. 

4. Write to the following registers: 

Register Address (hex)       Data (hex) 
PGF_CR1 7701 68BC 

Description 
Ends erase 

5. Follow the procedure for Erase Verify and verify addresses F000 through FFFF.  If 
anything was not erased, repeat this erase loop until everything in PGFLASH is erased up to 
a maximum of 10 times. 

6. Enable Standby mode. 

5.2.3.3.1.Erase Verify 

1. Write to the following registers: 

Register 
PGF_CR1 
PGF CR2 

Address hex) 
7701 
7702 

Data (hex) 
200 
88 

Description 
SetPGF_CR1  and 
PGF_CR2 to erase verify mode 
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2. Read from desired address. 

3. Read PGFLASH data from data register PGF_DR at 7700h. 

4. Go back to step 2 for a new address; or proceed to step 5. 

5. Enable Standby mode. 

5.2.3.3.2.Program 

1. Write to the following registers to put the PGFLASH in program mode: 

Register Address (hex)       Data (hex) 
PGF_CR1 7701 A888 
PGF_CR2 7702 10 

2. Write the address to program in the address register:. 

Description 
Set PGF_CR1 and PGF_CR2 to 
enter program mode 

Register 
PGF ADR 

Address (hex) 
7704 

Data (hex) 
address 

Description 
address in PGFLASH to program 

3. Write the data to be programmed into the data register: 

Register 
PGF DR 

Address (hex) 
7700 

4. Write to the following register: 

Register 
PGF CR1 

Address (hex) 
7701 

Data (hex) 
data 

Data (hex) 
A880 

Description 
data to be programmed into 
PGFLASH 

Description 
Begin programming of PGFLASH 

5. Wait 10 us for data to program. 

6. Write to the following registers: 

Register 
PGF_CR1 
PGF CR2 

Address(hex) 
7701 
7702 

Data (hex) 
A888 
86 

7 Write to PGF_CR1 to enter program verily mode. 

Register 
PGF CR1 

Address (hex) 
7701 

Data (hex) 
200 

Description 
Set PGF_CR1 and PGF_CR2 to 
end program mode 

Description 
Enter program verify mode 

8. Without changing the address, read PGFLASH data from data register PGF_DR at 7700h. 
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9. If data was not programmed correctly, return to step 1 for the same data and address; or 
return to step 1 for new data and address; or proceed to step 10. 

10. Enable Standby mode. 

5.2.3.3.3.Program Verify 

1. Write to the following registers: 

Register Address (hex)       Data (hex) Description 
PGF-.CR1 7701 200 Set PGF_CR1  and PGF_CR2 
PGF_CR2 7702 86 to enter program verify mode 

2. Read from the desired address. 

3. Read PGFLASH data from data register PGF_DR at 7700h. 

4. Return to step 2 for new address; or proceed to step 5. 

5. Enable Standby mode. 

5.2.4.     GRAM 

GRAM is the general-purpose Microcontroller memory. It consists of 256 16-bit registers 
occupying addresses 1000h through 10FFh. Constants and variables used by the 
Microcontroller software can be stored in GRAM. 

5.2.5.     TIMER 

The 32-bit timer is accessed as a pair of 16-bit words, as shown in Figure 5-26 Location 
1C00h is the lower half and 1C01h is the upper half. The timer is free-running, incremented at 
every clock. At 25 MHz, it wraps around to all zeros in 171.8 seconds. The timer is read only 
and is reset by the global reset pin, RESET*. Due to latency in reading the timer, it is best 
used for detecting non-terminating sequences as hangs rather than as a precise event timer 
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Resister:                      Timer 

Memory Address (hek^OO-l C01 

Bit Assignment: 

31 16 15 0 

High Word Low Word 

NI1000-08 

Figure 5-26. Timer 

5.2.6.     Interrupt Handling 

Interrupt handling on the Nil000 is accomplished by a combination of hardware and software. 
Since there is no specific hardware to queue multiple interrupts from the host, the system 
developer is responsible for implementing a protocol to ensure that interrupt requests are not 
overwritten or lost. The microcode program that is provided with the NilOOO utilizes a protocol 
that is fully described in Chapter 7, Microcontroller Software. 

Interrupts are enabled by setting Hardware Status Register #1 (HS1) bit 6, the interrupt enable 
(IE) flag to a 1. They are disabled by setting it to a 0. Interrupts are disabled following power 
on and initial activation of the chip. Interrupt requests are serviced immediately if the IE flag 
is set; otherwise, the request is deferred until the interrupt flag is set. 

5.2.6.1. Host to NHOOO Interrupts 

Provided interrupts are enabled the Microcontroller interrupt request (IR) flag, which is visible 
to the host via CSW[5], is set when one of the following occurs: 

• The host writes to the CMR register. 
• The host writes to the IIR register. 
• The host asserts the MCINT# pin. 
• The host asserts the ERROR* pin. 
• The Microcontroller clears the General Error flag (CSW[8]) after setting it. 

The NilOOO on-chip Microcontroller has a single interrupt vector at address FOOOh, which is 
the beginning of the Microcontroller program memory PGFLASH. The program counter PC is 
initialized to 1 instead of 0 for this reason. When the interrupt is requested, the 
Microcontroller immediately sets the host visible IR flag. This flag is visible via HS1[5]. The 
Microcontroller responds to the interrupt by reading the interrupt service routine (ISR) entry 
from the first location of PGFLASH, at address FOOOh, then performs a jump to subroutine 
ISR. 

The interrupt request flag (IR) is cleared by the Microcontroller as it acknowledges the 
interrupt. 
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5.2.6.2. A/rt OOO to Host interrupts 

Interrupt request by the Microcontroller to the host is signaled by the service request pin, 
SRQ#. It is asserted when the Microcontroller writes to the XIR and deasserted when the host 
asserts the interrupt acknowledge pin, IACK#. Any outstanding service request is indicated bv 
HS2[2]. 

If the IR flag is set by multiple events, only the one with the highest priority will be serviced by 
the Microcontroller. The priority order is: 

1. 
2. 
3. 
4. 
5. 

The host asserts the Microcontroller Interrupt pin, MCINT# or writes a 1 to IIR[0]. 
The host asserts the Error pin, ERROR* or the host writes a 1 to IIR[1] 
The host writes a 1 to IIR[2] or IIR[3]. 
The host writes to CMR[0:14]. 
The host writes a 0 to CMR[15] to reset the chip. 

1. 

Interrupt Service Routine Example 

The following is an example of an interrupt service routine (ISR) that calls a command 
interpreter and services hardware interrupts and other service requests. An example of the 
host service request is also provided. The following assumptions are made: 

Since there is no acknowledge pin, the following example uses the host service request to 
gain acknowledge. 

When the interrupt request is sent by the host writing to the CMR register, service from 
the Microcontroller is acknowledged through the general-purpose I/O registers. 

The example does not handle any previously outstanding service requests. The actual 
implementation of the service routines are not provided, either. The example is given 
here for illustration purposes only and must not be used as a standard interrupt service 
routine. The user must implement his/her own routines to address application-specific 
requirements. 

isrexam: The physical address is FOOOh, which 
is the first location in PGFLASH. 

cflgir 

push rO 
push M 
rdi 38h, rO 

; Clear the IR flag as soon as possible 
; to avoid missing new interrupts. 

; Save registers. 

; Read MR. 

Idi Ofh, r1 

and rO, r1 
jnz @isr1 

; Get mask for interrupt request other 
; than that by writing CMR. 

Idi 8000h, r1        ; Get mask for IR by writing CMR to 
; screening the IR by host clearing IIR. 
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@isr1: 

cmp rO, r1 
jnz @isrret 

jsi cmrintr 

jmp @isrret 

; No service required for this IR. 

; Now IR by writing CMR. 
; Call Command Interpreter — 

; interpreter for commands written in 
;CMR. 

; Provide acknowledge to host for IR 
; other than by writing CMR. If you 
; want to do the same for IR by writing 
; CMR, move this part up and reorganize 
; the code. 

Idi 4, r1 Mask for SRQ in HS2. 

@isrw1: 
rdi 28h, r2 
cmp r1, r2 
jnz @isrw2 

; Read HS2. 

; Put script here to notify SRQ 

; waiting for host or external hardware to 
; recognize that chip is waiting for 
; SRQ to be cleared. 

jmp @isrw1 

@isrw2: 

@isr2: 

Idi 1111h,r1 

wrirlXIR 

mov one, r1 

and rO, M 
jz @isr2 

jsi hwirsvc 
jmp @isr4 

Idi 2, r1 

Assume the host service request vector 1111 h 
is assigned for the Microcontroller 
interrupt acknowledge. 
Now the SRQ# pin is be asserted. The 
host should clear IIR with this 

request. 
Get mask for interrupt request from 
MCINT#. 

IR is from MCINT# pin or host writing 
a 1 to IIR. 
Call service routine. 

Get mask for interrupt request from 
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@isr3: 

@isr4: 

ERROR* or the Microcontroller Error 
flag. 

@isrret: 

and rO, r1 
jz @isr3 

jsi erirsvc 
jmp @isr4 

; IR is from ERROR* or the 
; Microcontroller error flag. 
; Call service routine. 

jsi hsirsvc 
; IR is by the host writing MR. 
; Call service routine. 

rdi 38h, rO 

; Clear IR if by the host clearing 
; This can be removed. 

cmp rO, rz 
jnz @isrret 
cflgir 

pop r2 
pop M 
pop rO 
sflgie 

; Return processing. 
; Restore registers. 

; Enable interrupt. 
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5.2.7. Error Handling 

The error pin ERROR* serves as both an input and an output. As an input, activating the 
ERROR* pin generates an interrupt to the Microcontroller provided the microcontroller's error 
flag is not active. The Microcontroller program, as supplied, causes it to freeze or suspend 
operations until the error has been reset by the host controller. As an output, the 
Microcontroller activates the ERROR* pin by activating its Error Flag, HS1[8]. 

Error handling is normally provided via the XIR register. Each time the Microcontroller 
completes a task from the host, it writes the command opcode it received into XIR[5-0] and a 
completion status or error code into XIR[14-8]. Error codes included with the Microcontroller 
software provided are listed in Chapter 7, Microcontroller Software. 

5.2.8. Multiple Chip Support 

The performance of an application may be improved linearly by using additional Nil000 
Accelerators. How many Nil000s may be supported in parallel is primarily limited by the 
ability of the host to perform all of it's functions and sustain the I/O rates. Sustaining I/O rates 
is dependent on: 

I/O form (Burst vs. non-Burst) 
Number of input features. Vectors with fewer features classify faster. 
Number of desired classes or firing classes. More classes produce more output. 
Whether IEEE format output is required. The 16-bit non-IEEE format is faster. 
Bus size (16 or 32-bit width) 
Amount of processing performed by the host. 

This section will discuss multi-chip support features of the Nil000 and some hardware 
interface requirements. 

The Chip Select pin, CS# may be used to select individual Nil000s. A Multi-chip Pin , 
MULTICHIP* is available to notify the Nil 000 that it is being used in a multiple chip 
environment. The state of the Multi-chip pin is reflected in HS2[8]. 

5.3.     CLASSIFIER ACCESS AND CONTROL 

The Classifier consists of the PA (Prototype Array ), DCU (Distance Calculation Unit), 
PPRAM, and MURAM. Operational modes and the register values used to establish them are 
shown in Table 5-8. 
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Table 5-8. Classifier Logic Block Mode Configuration 

LOGIC BLOCK MODE REGISTER VALUES 
PA & DCU DISABLED CSA = 0000h & CSB = 0000h 

CLASSIFY CSA = 6000h& CSB = 6000h 
MC (Microcontroller) CSA = 8000h & CSB = 8800h 

PPRAM 

MURAM 

IDLE 
CLASSIFY 
MC (Microcontroller) 

CLASSIFY 

MC (Microcontroller) 

PPRAM_CR = Oh 
PPRAM_CR = 4000h 
PPRAM_CR = 8000h 

MURAM_CR Bit = 1 and 
bits[2:5] = 1000h 
MURAM CR =0000h 

WRITTEN BY 
Microcontroller 
Microcontroller 
Microcontroller 

Microcontroller 
Microcontroller 
Microcontroller 

Microcontroller 

Microcontroller 

MC = Nil000 on-chip Microcontroller 
MURAM = Math Unit RAM 
PPRAM = Prototype Parameter RAM 
PA & DCU = Prototype Array and Distance Calculation Unit 

5.3.1.     Prototype Array 

The PA (Prototype Array) is a non-volatile flash memory. The PA occupies addresses BOOOh 
through B8FFh in the memory. It can store up to 1000 prototype vectors when they each have 
222 features of five-bit resolution. This leaves 24 columns for the Bad Column Table, any bad 
columns and non-volatile memory for saving PPRAM for imbedded applications When the 
prototype vectors have 32 features or less, the PA can store as many as 8000 such vectors 
See the section describing the ARR register and the examples there. 

The PA is organized as two 256 (row) x 512 (column) arrays. A row corresponds to a feature 
and a column corresponds to a prototype. Each array has 512 individually erasable blocks 
each containing two columns. For example, column number 0 and column 512 are in the 
same block as are columns 1 and 513, etc. Data for either column (prototype) in a block can 
be written individually into the PA, but erasing operates on a block, potentially erasing two 
prototypes if both columns are used. It is the designer's responsibility to save the vector not 
intended for erasing. The standard microcontroller software saves and restores these 
columns when doing a COLUMNERASE command. When doing a COLUMNWRITE 
command, the host software must backup the "other" column . See Chapter 7, Microcontroller 
Software for more information. 

Two addresses are required to access the PA: a column number, which has an address range 
of 0-1023, from BOOOh to B3FFh, and a row number, which has an address range of 0-255 
from B800h to B8FFh.   Access is a two-step process in which a read specifies the column 
number, followed by a read or write to the row.  Valid data are returned on the second step 
For example, to read row 10h of column number 21 h, the following steps are required- 

read address B021 
read address B810 

column number 21h 
row 10h 
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It is not necessary to repeat the first read when a set of rows (features) of one column 
(prototype) is accessed. Two PADCU registers, CSA and CSB, hold the current column 
number and row number. They are updated when the upper 5 bits of address is 10110 for 
column number and 10111 for row number, respectively. For example, to read all features of 
a prototype at column number 20h with 6 features, the following steps are required: 

read address B020 prototype number 20h 
read address B800 first feature 
read address B801 second feature 

read address B805 sixth feature 

Each 5-bit feature is encoded as 10-bit data according to the following scheme: 

Value Encoded Data 

0 01 
1 10 

The encoded data must be bitwise-inverted before being written into the PA. Reading the PA 
returns the bitwise-inverted encoded data. For example, if the desired value in PA is 14d, 
which is 01110 in binary, the encoded data is 01 10 10 10 01 (note, spaces inserted for 
clarity). The data actually written into the PA is 10 01 01 01 10 (again, spaces inserted for 
clarity and are not to be included in the actual data). 

The use of the ARR affects PA addressing, as described later in this section. Access to the 
PA also requires setting of registers in appropriate sequences; see Section 5.3.2 for these 
instruction sequences. There are three PA operating modes: Disabled, Classify and 
Microcontroller, as shown in the list below. The PADCU registers must be set to proper values 
in each mode. 

• Disabled—This mode prohibits access to the PA. The mode is entered by the 
Microcontroller by writing value 0000h to the CSA and CSB registers. 

• Classify—This mode is used to perform classification. Other logic block modes must also 
be set properly. See Section 5.3.5 for details. The Microcontroller can access the 
PADCU registers in this mode. The mode is entered by the Microcontroller by writing 
values 6C00h and 6000h to the CSA and CSB registers, respectively. 

• Microcontroller—-This mode allows the Microcontroller to access the PA and to set, clear 
or read the DCU Used flags. A DCU is disabled if its Used flag is not set. The mode is 
entered by the Microcontroller by writing value 8000h to the CSA and CSB registers. 
Flag-and-Distance Read mode (FD Read) is a submode, which is entered by the 
Microcontroller by writing values 8000h and 8800h to the CSA and CSB registers, 
respectively. 

5.3.1.1. Bad Column Table (BCT) 

The last block of the PA (storage for columns 511 and 1023) is used as a Bad Column Table. 
If this block is faulty, the next block (for columns 510 and 1022) is used. The BCT stores the 
die's serial number, sort date, and faulty column locations in the PA flash memory. The BCT 
is organized as 256 10-bit numbers, as shown in Table 5-9.   The BCT specifies locations of 

5-43 11/6/95 



NMOOO User's Guide 

faulty blocks (containing two prototype vectors if the number of features is 222 (padded to 
256)), rather than prototype locations. The whole block must not be used if either prototype 
storage column is faulty. This avoids potential problems in PA programming and erasing. 

Table 5-9. Bad Column Table 

Entry # Data 
0 1001110000 
1 0110001111 

2-4 Serial Number 
5-6 Sort Date 
7 Reserved 
8 Total Number of Bad 

Columns in the PA 
9-15 Reserved 

16-144 Bad Column Map 
144 0110010000 
145 1001101111 

146-255 Bad Column List 

Default Patterns—Since the column at which the BCT resides can also be faulty, four 10-bit 
code patterns at location 0, 1, 144 and 145, are used as validation codes. 
Any deviation from those shown in Table 5-9 means a faulty BCT. 

Serial Number—Uses three 10-bit numbers. 
Sort Dare—Uses two 10-bit numbers. This information can be re-supplied within a limited 

period if accidentally erased. 
Bad Column Map— Uses a 2-bit pattern for each of the 512 blocks in the PA: 

10      a bad column 
01       a good column 

Each 10-bit number in the Bad Column Map stores data for four columns. 
The first two bits of the 10-bit number give the total number of bad 
columns among the four columns: 

00 no bad column out of the four columns 
01 one bad column out of the four columns 
10 two bad columns out of the four columns 
11 three or four bad columns out of the four columns 

Sad Column List—A list of bad column numbers, each represented by a 10-bit number. 

The following two examples illustrate what a 10-bit number in the Bad Column Map 
represents: 

0001010101 :      all four columns are good 
0101100101 :      the second of the four columns is bad 

Use of the BCT varies, depending on the application software. For example, when new 
prototypes are committed and programmed into the PA during learning, the host must keep 
track of the locations of unused good columns. Otherwise, it may take a long time to locate 
the bad columns. 
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The PA and DCU registers are shown in Table 5-10. 
section. 

They are explained in the following 

Table 5-10. PADCU Registers 

Address 
(Hex) 

Name Host 
W/R 

MC 
W/R 

Description 

3001 CSA - W/R PADCU Control and Status register. 
3002 MODE - W/R PADCU Mode register. 
3004 DCU_DIM W PADCU Dimension register. It contains the 

number of features of the input vector minus 1. 
The value is between 0 and 255, inclusive. 

3008 NCA W PADCU register that contains the number of 
highest column containing a prototype (value 
between 0 and 1021, inclusive). 

3010 NCB - W PADCU register that contains the MU clock 
count. 

3020 AUX - W/R PADCU auxiliary register. 
3040 CSB - W/R PADCU control and status register. 
3200 ARR W/R PADCU Address Relocation register. Contains 

the starting position of the PA block in use 
(lowest numbered row and column). Value for 
starting row # must be multiple of 32, and 
column boundary must be multiple of 128. 

5.3.1.2. Control and Status Registers (CSA and CSB) 

CSA and CSB are the 16-bit control and status registers of the PA and the DCU. Their 
contents are the status of the hardware FSM (Finite State Machine). They are initialized to 
0000h upon power-up and chip reset (by either the host asserting the RESET* pin or writing a 
0 to CMR[15]). The Microcontroller must write these registers to provide valid initial status of 
the machine or to change the mode of operation. The register settings in the three modes are 
shown in Figure 5-27 and Figure 5-28. 
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Register: CSA 

Address (hex):    3001 

Bit Assignment: 

15 

Register Value 

Software-Controlled Mode:      Disabled      Classify      Microcontroller 

Register Value (hex): 0000 6C00 8000 

Nil 000-06: 

Figure 5-27. The CSA Register 

Register: CSB 

Address (hex):    3040 

Bit Assignment: 

15 

Register Value 

Software-Controlled Mode:       Disabled       Classify 

Register Value (hex): 0000 6000 

Microcontroller 

8000 
8800 (for FD-read) 

Figure 5-28. The CSB Register 
Nl 1000-06.1 

5.3.1.3. Hardware Setting Registers (MODE and AUX) 

The MODE and AUX registers are 16-bit hardware-mode-setting registers. They are used for 
reading, erasing and programming the flash EPROM cells of the PA. They are initialized to 
OOOOh. Only the values given in Figure 5-29 and Figure 5-30 are valid. Do not set them to 
any other values. 
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Register:                MODE 

Address (hex):     3002 

Bit Assignment: 

15 0 

Register Value 

Software-Controlled Mode: Disabled      Classify M icrocontroller 

Register Value (hex): OOOO              0100 0040 (set flags) 
0020 (clear flags) 
0080 (read flags) 

NI1000-06! 

Figure 5-29. The MODE Register 

Register:               AUX 

Address (hex):    3020 

Bit Assignment: 

15 0 

Register Value 

Software-Controlled Mode: 

Register Value (hex): 

Disabled      Classify 

0000              0000 

Microcontroller 

OOOO 

NI1000-06J 

Figure 5-30. The AUX Register 

5.3.1.4. Address Relocation Register (ARR) 

The PA can store as many as 1000 prototype vectors with up to 222 features. When there are 
fewer than 1000 vectors or fewer than 222 features in each vector, the PA can be segmented 
into blocks. Each block may store the prototype vectors for a particular application problem. 
The 16-bit ARR register specifies the starting position in the PA of the region in use (lowest 
numbered row and column). Figure 5-31 shows this register followed by its bit assignments. 
The column offset gives the starting column number modulo of 128, and the row offset gives 
the starting row number modulo of 32. This representation results in a total of 56 possible 
blocks (8 of 64 theoretically possible include columns allocated for the BCT and PACT and are 
unavailable). 
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Register 

Address (hex): 

Bit Assignment 

ARR 

3200 

15 14 

Unused 

Used Bit PA Column 

Number 
(modulo 128) 

Figure 5-31. The ARR Register 

Used Bit 

Unused 

Reserved, 
Must be 0. 

PA Row 

Number 

(modulo 32) 

Nil 000-067 

bit(s) 
M2L 
M3j_ 

[6] 

[8-111 
[12:14] 

15 

Function/Value 
Reserved 
Row Offset 
Reserved, must be 0. 

Row Relocation Used Bit 

1 

0 
Reserved 
Column Offset 

Column Relocation Used Bit 
1 

0 

Description 

Starting row number, modulo 32. 
Forces high half of 512x512 memory if 1. 
Used for testing.   

PA row relocation is used. Row offset is 
given by bits [4:6]. 
PA row relocation is not used. 

Starting column number in PA, modulo of 
128. 

PA column  relocation  is  used.  Column 
offset is given by bits [12:14]. 
PA column relocation is not used. 

Two additional registers specify the size of the block. DCU_DIM contains the dimensions of 
the prototype vectors in the block. NCA contains the index of the last prototype vectors in the 
region. This index is from 0 to 127, inclusive, when using address relocation in the low half of 
the prototype array. It is necessary to add 512 to the index when using address relocation in 
the upper half of the array. Figure 4-31 provides a graphical explanation. The starting position 
of a region (given by the ARR register) must coincide with the cross-points of the vertical and 
horizontal lines. The size of a block, however, is limited. When row relocation is enabled a 
maximum of 32 features (28 usable) can be used and the block cannot cross the 511/512 
boundary. When column relocation is enabled, a maximum of 128 columns are available 
This number is reduced by bad columns or if the reserved columns fall within the block Two 
examples are given in Figure 5-33 and Figure 5-34. 
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224 

192 

160 

128 

96 

64   i 

C 

32 

0 

A 

B  llllttl! 
0                128               256               384              512              640              768              896 

Nil 000-068 

Figure 5-32. Prototype Array Segmentation 

Register ARR 

Address (hex): 3200 

Bit Assignment 

15 14 12 11 8 7 6 5 3 2 0 

0 0 0 0 1 0 0 1 0 

Register DCUJDIM 

Address (hex): 3004 

Bit Assignment 0020h 

Register NCA 

Address (hex): 3008 

Bit Assignment 0200h 

Nil 000-069 

Figure 5-33. Example A of Specifying a Window in PA 

The block is shown as the shaded area A in Figure 5-32. 
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Register ARR 

Address (hex): 3200 

Bit Assignment 

15 14                  12 11                       8 7 6 5                    3 2 0 

1 1         0         1 0 0 0         0        0 ■::;;:H;SH;>:?S* S 

Register DCUJ3IM 

Address (hex): 3004 

Bit Assignment 0100h 

Register NCA 

Address (hex): 3008 

Bit Assignment 0080h 

Figure 5-34. Example B of Specifying a Window in PA 

The block is shown as the shaded area B in Figure 5-32. 

The column and row offsets specified in the ARR register are relative to location 
(BOOOh, B800h). When the Column and Row Relocation Used Bits of ARR are clear, PA is 
addressed the same way as described at the beginning of this section. When the either of 
these bits is set, addressing is relative to the position in PA specified by the Column or Row 
Offset fields of ARR, respectively. For example, the value of ARR in Figure 5-33 specifies a 
PA block starting at column 0 (no offset), row 64 (2 * 32). Then, writing to location 
(B001h, B802h) will modify the PA entries at column 1, row 66. 

5.3.1.5.  Other Registers (DCU_DIM, NCA and NCB) 

The DCU_DIM and NCA registers contain information about the window of prototype vectors 
in use in the PA. These registers are shown in Figure 5-35 and 5-36, respectively. A 
graphical explanation of the window is given in Figure 5-34, above. The NCB register shown 
in Figure 5-37, contains the clock count in the math unit. This value should be 8/?. 
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Register 

Address (hex): 

3rt Assignment 

15 

DCU_DIM 

3004 

0 

Input Vector Dimension-1 

Nil 000-071 

Figure 5-35. The DCU_DIM Register 

Register: 
Address (hex): 
Bit Assignment: 

15 

NCA 
3008 

0 

Number of Input Vectors -1 

NilOOO-072 

Figure 5-36. The NCA Register 

Register:                NCB 

Address (hex):    3010 

Bit Assignment: 

15 0 

08h 

Nl 1000-07: 

Figure 5-37. The NCB Register 

5.3.2.     PA Access 

Only the Microcontroller can directly access the prototype array. The host must access PA 
through the Microcontroller. See Section 5.3.1 for how data are encoded and stored in PA. 
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5.3.2.1. Prototype Array Read by the Microcontroller 

Write to the following registers: 

Register Address(hex) Data Description 

CSA 3001 8000h Set PA to Microcontroller mode 

CSB 0040 8000h Set PA to Microcontroller mode 

MODE 3040 0000h Initialize the MODE register. 

AUX 3020 0000h Initialize the AUX register. 

2. Read from address (B000 | column number)n, where "|" is the bitwise OR operation. 

3. Read data from address (B800 | row number)n. As many as 256 features can be read in 
sequence without re-entering the column number. 

4.    Write to the following registers: 

Register 

MODE 

AUX 

Address(hex) 

3040 

3020 

Data 

0000h 

0000h 

Description 

Reinitialize the MODE register. 

Reinitialize the AUX register. 

5.    Repeat from step 1 for another column. 

For example, the following sequence constitutes the above steps 2 and 3 for reading a 
prototype at column 20h containing 6 features: 

read address B020 
read address B800 
read address B801 

read address B805 

first feature 
second feature 

sixth feature 
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5.3.2.2. Prototype Array Programming by the Microcontroller 

1.    Write to the following registers: 

Register Address (hex) Data Description 

CSA 3001 8000h Set PA to Microcontroller mode 

CSB 0040 8000h Set PA to Microcontroller mode 

MODE 3040 0000h Initialize the MODE register. 

AUX 3020 0000h Initialize the AUX register. 

2. Read from address (B000 | column number)n, where "|" is the bitwise OR operation. 

3. Write data to address (B800 | row number)h-   As many as 256 rows can be written in 
sequence without re-entering the column number. 

4. Write to the following registers: 

Register Address (hex)       Data Description 

MODE 3040                         811Oh Program the flash cells. 

AUX 3020                        01D1h Program the flash cells. 

5. Wait 10 microseconds for programming. 

6. Write to the following registers: 

Register Address (hex)        Data Description 

MODE 3040                         0000h Reinitialize the MODE register 

AUX 3020                         0000h Reinitialize the AUX register. 

Repeat from step 1 for another column. 

For example, the following sequence constitutes the above steps 2 and 3, for writing a 
prototype at column 20h containing 6 features: 

read address B020 
write address B800 first feature 
write address B801 second feature 

write address B805 sixth feature 
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5.3.2.3. Prototype Array Erase by the Microcontroller 

1.    Write to the following registers: 

Register Address (hex) Data Description 

CSA 3001 8000h Set PA to Microcontroller mode. 

CSB 0040 8000h Set PA to Microcontroller mode. 

MODE 3040 0000h Initialize the MODE register. 

AUX 3020 0000h Initialize the AUX register. 

2. Read from address (B000 | column number)h, where "|" is the bitwise OR operation. 

3. Write to the following registers: 

Register Address(hex) Data Description 

MODE 3040 4900h Erase the flash cells. 

AUX 3020 0001 h Erase the flash cells. 

4. 

5. 

Wait 10 to 100 milliseconds for erasing. 

Repeat from step 2 for another column. 

5.3.2.4. Prototype Array Program-Verify and Erase-verify by the 
Microcontroller 

The instruction sequence is the same as the read sequence, except that at step 4 the AUX 
register is set to the following values: 

Program-verify:   2060h 
Erase-verify:        1070h 
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5.3.3.     PPRAM 

The PPRAM (Prototype Parameter RAM) stores the parameters associated with the 
prototypes. These parameters are used by the MU (Math Unit) to compute the firing-class IDs 
and the probability densities. PPRAM and its associated registers are shown in Table 5-11 
and described in the following section. 

Table 5-11. PPRAM and Registers 

Address 
(Hex) 

Name Host 
W/R 

MC 
W/R 

Description 

4081 PPRAMCR3 - W/R PPRAM3 control register. 

4101 PPRAMCR2 - W/R PPRAM2 control register 

4201 PPRAMCR1 - W/R PPRAM1 control register 

4381 PPRAM_CR - W PPRAM global control register. It is used to write all 
three PPRAMs. 

4400- 
47FF 

PPRAM1 ~ W/R For each prototype vector, this RAM holds a 6-bit 
class ID, a 1-bit probabilistic flag, a 1-bit Used flag, 
and an 8-bit smoothing factor (exponent, mantissa) 

4800- 
4BFF 

PPRAM2 - W/R For each prototype vector, this RAM holds a 13-bit 
threshold radius and a 1-bit Disabled flag. 

5000- 
53FF 

PPRAM3 

" 

W/R For each prototype vector, this RAM holds a 16-bit 
count of the number of times that vector fired in the 
last epoch of the training process. 

Bit fields of the three PPRAMs are shown in Figure 5-32 and are described below.    The 
PPRAMs occupy addresses 4400h through 53FFh. 
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Memory: PPRAM1 
Address (hex):       4400-47FF 
Bit Assignment: 

15 12     11 6   5 

Exponent K« Mantissa, Kn, Class ID 

Memory: PPRAM2 
Address (hex):       4800-4BFF 
Bit Assignment: 

15 14 13     12 

Unused 

Disabled 
Flag 

Memory: PPRAM3 
Address (hex):        5000-53FF 
Bit Assignment: 

15 

Used Probabilistic 
Flag 

Threshold Radius 

Count 

Figure 5-38. Word Format PPRAM 

NilOOO-074 

Count—C[0:15]—the number of training vectors that fell within this prototype's influence 
field during the last epoch of learning; used as a factor during classification when 
calculating probability density. 
Disable Flag—D—set to disable this prototype. 
Radius—R[1:12]—the prototype threshold radius. 
Smoothing Factor Mantissa—Km[0:3]—unsigned mantissa of the smoothing factor of the 
exponential function. 
Smoothing Factor Exponent—Ke[4:7]—signed exponent of the smoothing factor of the 
exponential function. 
"Used"Flag—U—set when the PPRAM word is loaded with a valid prototype. 
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• Probabilistic—P—indicates that the prototype's threshold radius is the minimum allowed. 
This bit is passed through to the class identification result to indicate that the first (highest 
number) prototype to fire for this class was probabilistic. If prototypes are ordered such 
that all deterministic prototypes have higher numbers than probabilistic prototypes for the 
same class, this bit flags that only probabilistic, not deterministic, classification is 
possible with this prototype. 

• Class—S[0:5]—the class ID of the prototype. 

The 4-bit signed exponent of the exponential function's smoothing factor is added to a built-in 
bias of negative 13 (i.e., 13 is subtracted from the stored value). For example, an exponent of 
0 is really an exponent of -13. Since a value of -7 to +7 can be entered into this field, the 
effective exponent is -20 to -6. The 8-bit floating-point value for the smoothing factor has the 
following characteristics: 

• The mantissa has only explicit bits, no implicit leading 1 as in the IEEE floating-point 32- 
bit format. 

• The mantissa's binary point is to the right of the value (bbbb.). 
• The exponent binary point is to the right, but the binary point is found moving the binary 

point left 13 places from the location indicated by the exponent. Thus, if all 4 bits of the 
exponent are zero, the mantissa is multiplied by 2"13. 

• Zero is represented by a zero mantissa, regardless of the exponent. 
• The resulting number is always non-negative. 
• The smallest non-zero value is represented by 1111 0001, or 2('7'13) * 1 = 2"20. 
.     The largest value is represented by 0111 1111, or 2(7'13) * 15 = 2* * (24 -1) = 2"2 - 2"6. 
• This floating-point format is only used for the smoothing factor for PRCE and PNN 

calculations. 

PPRAM entries correspond to the prototype vectors stored in the PA. For example, the 
parameters for prototype number 200h are stored in PPRAM at address 4400h+200h 
4800h+200h, and 5000h+200h. 

The standard Microcontroller code that is shipped with the chip will copy the PPRAM Used 
flags to the PADCU. As a result, any prototype that has its Used flag set to 1 will be 
processed by the classifier. To avoid the possibility of uninitialized data being processed, all 
locations in the PPRAM should be written when they are loaded with new prototypes, and 
unused prototypes should have their Used flags cleared to 0. 

PPRAMs have three operating modes, Idle, Classify and Microcontroller. These modes are set 
by the Microcontroller by writing to the control registers. When the Microcontroller writes to 
the global control register PPRAM_CR, the same value is written to the three individual control 
registers: PPRAM1_CR, PPRAM2_CR and PPRAM3_CR. The modes and the register 
settings under these modes are: 

. Idle—This mode prohibits access to the PPRAM. It is entered by the Microcontroller by 
writing a value 0000h to the PPRAM_CR register. 

• Classify—-This mode is used to perform classification. Other logic blocks must also be in 
appropriate modes and certain pins must be set properly. The Microcontroller should not 
access the PPRAM during classification, since the data will be changing faster than the 
microcontroller can keep up with, resulting in unreliable access. This mode is entered by 
the Microcontroller by writing a value 4000h to the PPRAM_CR register. 
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Microcontroller—-This mode allows the Microcontroller to access the PPRAM.  The mode 
is entered by the Microcontroller by writing a value 8000h to the PPRAM_CR register. 

Memory: PPRAM_CR 

Address (hex):    4381 

Bit Assignment: 

15 

Register Value 

Memory: PPRAM1_CR 

Address (hex):    4201 

Bit Assignment: 

15 

Register Value 

Memory: PPRAM2_CR 

Address (hex):    4101 

Bit Assignment: 

15 

Register Value 

Memory: PPRAM3_CR 

Address (hex):    4081 

Bit Assignment: 

15 

Register Value 

Software-Controlled Mode: 

Register Value (hex): 

Disabled       Classify       Microcontroller 

0000 4000 8000 

Figure 5-39. PPRAM Registers 
J-07f 
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5.3.4.     PPRAM Access 

The host can only access the PPRAM through the Microcontroller by using the following 
instruction sequence: 

5.3.4.1. PPRAM Read and Write by the Microcontroller 

1.    Write to the following register: 

Register Address (hex) Data 

PPRAM CR       4381 8000h 

Description 

Set   the   PPRAM   to   Microcontroller 
mode. 

2.    For each prototype vector (with a column number in the range 0h-3FFh), read or write the 
following memory locations: 

Memory Address (hex) Bit Data 

PPRAM1 4400 + 
column number 

0:5 Class ID. 

6 Probabilistic flag. 

7 Used flag. 

8:15 Smoothing factor, K. 

PPRAM2 4800 + 
column number 

0:12 RBF radius. 

13 Disabled flag. 

PPRAM3 5000 + 
column number 

0:15 Count used in the PDF calculation. 
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5.3.5.     MURAMs 

The Math Unit RAMs and registers are shown in Table 5-12 and described in the followinq 
paragraphs. 

Table 5-12. MURAMs and Registers 

Address 
(Hex) 

Name Host 
W/R 

MC 
W/R 

Description 

6080 MURAM1 - R Firing class count for MURAM1. 

60C0 MURAM2 - R Firing class count for MURAM2. 

6100 MURAM_CR - W/R MU mode-control register. 

6200- 
623F 

Flag 
MURAM 

- R 64 flags, used to indicate the firing classes for 
the current MURAM. Only the LSB is used. 

6400- 
643F 

Firing  Class 
List 
MURAM1 

W/R One of the two alternating 64x8-bit buffers, 
reserved for the class IDs of firing classes. 

6440- 
647F 

Firing  Class 
List 
MURAM2 

W/R One of the two alternating 64x8-bit buffers, 
reserved for the class IDs of firing classes. 

6800- 
683F 

Probability 
MURAM1 

W/R One of the two 64x16-bit buffers, used to 
accumulate the probability densities of the input 
vector for each of the 64 classes. 

6840- 
687F 

Probability 
MURAM2 

W/R One of the two 64x16-bit buffers, used to 
accumulate the probability densities of the input 
vector for each of the 64 classes. 
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The MURAM memories include: 

• Flag MURAM—a 1 x 64 memory used as a table of classes which have already 
recognized the input vector being presented. Each entry corresponds to one of the 64 
possible classes. It occupies addresses 6200h through 623Fh. 

. Class List MURAMs—an 8 x 64 x 2 double buffer holding a list of the class IDs of 
recognized classes. A new byte is allocated every time a new class is encountered. 
(Unlike the other MURAM memories, the memories in this buffer are not indexed by class 
ID; they are addressed by counters, so they grow up from address zero.) They occupy 
addresses 6400h through 647Fh. 

• Probability MURAMs—a 16 x 64 x 2 double buffer which accumulates the probability 
value of the input vector for each class. As with the flag MURAM, each MURAM address 
corresponds to one of the 64 classes. They occupy addresses 6800h through 687Fh. 

The flag MURAM is not accessible to the ORAM, so it is re-used every cycle. It is indexed by 
the class ID. When a class is recognized, the bit addressed by the class ID is set. If the bit 
previously was clear, that indicates the class had not yet been recognized during the 
processing of the input vector. This causes the class counter to be incremented and allocates 
a word in the class-list MURAM. The counter keeps a running tally of the number of classes, 
which is used to address the class-list MURAM when a new word is allocated. 

The class-list MURAMs are 8 bits wide, consisting of a six-bit class ID and a bit to indicate 
that the first (highest numbered) prototype to recognize the input vector has a threshold radius 
equal to the minimum radius. If all prototypes with a threshold radius higher than the 
minimum are arranged so that they are at higher prototype numbers than those with the 
minimum radius, this bit can identify classifications that should be probabilistic. An eighth bit 
is undefined. Figure 5-40 shows the format of a byte in the firing-class-list MURAMs. 
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Memory: 
Address (hex): 
Bit Assignment: 

Firing-Class-List MURAM1 
6400-643F 

7 6 5                                                          0 

Class ID 

Unused Probabilistic 

Memory: 
Address (hex): 
Bit Assignment: 

Firing-Class-List MURAM2 
6440-647F 

7 6 5 

Class ID 

Unused Probabilistic 
Nil000-076 

Figure 5-40. Class-List MURAM Word 

The fields of a class-list MURAM word are: 

• Class ID S[5:0]—Class ID of a class which includes the input vector. 
• Probabilistic—a prototype with the minimum radius recognized the input vector. This 

indicates a reduced confidence in the ability to classify using deterministic classification 
and recommends the use of probabilistic classification. The Probabilistic bit is only 
meaningful if all Probabilistic prototypes of a given class are placed in lower numbered 
columns of the array than the deterministic prototypes for that class. 

• Valid—this word has been written since reset initialization. 

The class-list MURAMs are addressed by a counter. The counter begins at zero and 
increments as new classes are encountered. 

The probability MURAMs consist of a 16-bit floating-point accumulator in the internal format of 
the Nil000 Accelerator. The internal format is passed directly through ORAM or translated 
into an IEEE-compatible format as it passes through ORAM. Figure 5-41 shows the internal 
format of a word in the probability MURAMs. 
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Memory:                Probability MURAM1 

Address (hex):    6800-683F 

Bit Assignment: 

15                                               10      9 0 

Exponent Mantissa 

Memory:                Probability MURAM2 

Address (hex):    6840-687F 

Bit Assignment: 

15                                               10      9 0 

Exponent Mantissa 

Nil 000-07 ' 

Figure 5-41. MURAM Probability Word 

The fields of a probability MURAM word are: 

• Exponent—six-bit 2's-complement exponent. 
• Mantissa—10-bit fractional mantissa (i.e. 0 <= mantissa < 1). 

Once the last probability calculation has been performed for the current input vector, the pairs 
of class-list and probability MURAMs are swapped. This allows the processing of a new 
vector to begin immediately, while the old vector is uploaded to the host. Both the class list 
and probability densities are computed and are available. 

MURAMs have two operating modes: Classify and Microcontroller. A control register, 
MURAM_CR, is used to set the mode for all MURAMs. Its values under these modes are 
shown in Figure 5-36. Do not set the register to any other value. 

• Classify—This mode is used to perform classification. Other logic block modes must also 
be set properly. See Section 5.3.6 for details. The microcontroller enters this mode by 
writing a 1 to bit 1 and a value in the range 0000b through 1000b to bits [2:5] of the 
MURAM_CR register. 

• Microcontroller—-This mode allows the Microcontroller to access the MURAMs. The mode 
is entered by the Microcontroller by writing a value 0000h to the MURAM_CR register. 
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Register: MURAM_CR 
Address (hex):       6100 
Bit Assignment: 

15 1      0 

Exponent Offset 

Software-Controlled Mode:       Classify 

Bitl 
Bits [2-5] 

1 
0000-1000 

Microcontroller 

0 
0000 

NilOOO-078 

Figure 5-42. The MURAM_CR Register 

The Math Unit smoothing function is: 

2    " 

0<Km<15 

where, 
Km = unsigned mantissa of the smoothing factor, K, obtained from PPRAM, 
K« = signed exponent of the smoothing factor, K, obtained from PPRAM, 
d = the calculated city-block distance, 

Bits [2:5] of the MURAM_CR register specify the offset in the exponent of the Math Unit 
smoothing function. 

5.3.6.     Classification 

1.    Write to the following memory locations and registers: 

Data Memory     or      Address (hex)        Bit 
Register 

MURAM 6400 - 647F, 
6800 - 687F 

N/A 

DIM 0008 0:7 

CRB 0048 0:15 

0000h 

Description 

Clear MURAM. 

input vector     the number of features for input 
features -1       vectors minus 1. 

0 Clear CRB. 
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2. Load PPRAM. See Section 5.3.4. 

3. Write to the following registers: 

Register 

PPRAM_CR 

MURAM CR 

Address (hex) 

4381 

6100 

Bit Data Description 

N/A 0002h Set PPRAM to Classify mode. 

1 1 Set   MURAM   to   Classify  mode. 
2:5 0000h - Specify an offset to the exponent 

1000h of the smoothing factor. 

Set, clear or read the DCU Used flags by writing to the following registers and memory 
locations in order, where "p" is the prototype number of each vector to be used in 
classification, "p » 1" means to shift p one bit to the right: 

Description 

Set PA to Microcontroller mode. 

Write 8000 to set PA to 
Microcontroller mode. 
Write 8800 to read the Used flags. 

Initialize the AUX register. 

Initialize the MODE register. 

Select PA row. 

Select PA column. 

Write 0020h to clear flags. 
Write 0040h to set flags. 
Write 0080h to read flags. 

Reinitialize the MODE register. 

Memory    or     Address 
Register 

(hex) Data (h 

CSA 3001 8000 

CSB 3040 8000 
or 8800 

AUX 3020 0000 

MODE 3002 0000 

Memory B800 l(P »1) 0000 

Memory B000 IP 0000 

MODE 3002 0020 
or 0040 
or 0080 

MODE 3002 0000 

Repeat the last four writes for another prototype. 
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5.    Write to the following registers: 

Register Address (hex) Data (hex) 

AUX 3020 0000 

MODE 3002 0100 

DCU_DIM 3004 input vector features -1 

MURAM CR      6100 00xx 

NCA 3008 number of used 
prototype vectors 

NCB 3010 0008 

ARR 3200 column and row offset 
relocation used bits 

CSA 3001 6C00 

CSB 3040 6000 

Description 

Set PA to Classify mode. 

Set PA to Classify mode. 

Specify a window in PA. 
See Section 5.3.1. 

Set bits [2:5] to an appropriate 
value. See Section 5.3.5. 

Specify a window in PA. 
See Section 5.3.2. 

Specify clock count for MU. 

Specify the starting position of the 
PA block in use. See Section 
5.3.2. 

Set PA to Classify mode. 

Set PA to Classify mode. 

6.    Write to the following I/O registers in order: 

Register      Address (hex) 

CRB 0048 

Data (hex) 

0070 

CRA 0040 0001 

Description 

Unreset IRAM, ORAM. 
Set IRAM, ORAM to Classify 
mode. 
PRCE results are in 32-bit IEEE 
format. 

Select firing-class IDs as outputs. 

7. Write an input vector to IRAM.   See instruction sequence IRAM Write by the Host in 
Section 5.1.4, step 2. 

8. Read RCE results (firing class IDs) from ORAM when ORAM is full, as indicated by 
HS2[14] = 1. Continue reading until ORAM is empty, as indicated by HS2[10] = 1. 

9. Write to the following I/O register: 

Register      Address (hex) Data (hex) Description 

CRA °°40 0003 Unreset ORAM. 
Set ORAM to Classify mode. 
Select probabilities as outputs. 
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10. Read PRCE results (probabilities) from ORAM when ORAM is full, as indicated by 
HS2[14] = 1. Continue reading until ORAM is empty, as indicated by HS2[10] = 1. 

11. Write to the following I/O register: 

Register      Address (hex) Data (hex) Description 

CRA 0040 0001 Unreset ORAM. 
Set ORAM to Classify mode. 
Select firing class IDs as outputs. 

12. Repeat from step 7 if there are more vectors to classify. Otherwise, proceed to step 13. 

13. Exit from the classification by writing to the following registers: 

Register      Address (hex) Data (hex) Description 

CSB 3040 8000 Set PA to Microcontroller mode. 

CSA 3001 8000 Set PA to Microcontroller mode. 

Writing to the above registers stops the classifier by taking PADCU out of Classify mode. 
Other logic blocks, such as IRAM, ORAM, PPRAM and MURAM are still in Classify mode. 
If so desired, individual control registers for each logic block must be written with proper 
values to bring the block out of Classify mode. See Sections 5.1.3, 5.1.4, 5.1.7 and 5.1.8 
for details. 

5.3.7.     Learning 

The instruction sequence for a learning process depends on the particular algorithm 
implemented. For user-defined algorithms, it is the user's responsibility to define such 
sequences. 
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NI1000 MICROCONTROLLER ARCHITECTURE 

6.1. Introduction 

Most users of the Nil000 do not have to program the microcontroller. Instead, the standard 
microcontroller program (a.k.a. standard microcode) that is shipped with the chip for learning, 
classification and host interface protocol provides all of the functions required for most 
applications. See Chapter 7, Standard Microcontroller Software. 

The Nil000 microcontroller has a Harvard architecture (separate data and code storage), 
provides 6 address modes and 6 groups of instructions. The entire instruction set is explained 
in this section after a brief description of the microcontroller registers, flags and addressing 
modes. A summary table cross-referencing the flags affected by each instruction is presented 
at the end of this section. 

6.2. Microcontroller Registers and Flags 

There are 11 microcontroller registers, listed in Table 6-1. A summary table cross-referencing 
the flags affected by each instruction is presented at the end of this section. 

Table 6-1. Microcontroller Registers 

Register Size Type Code (hex) Description 

R0 16 bits W/R 0 General purpose register 0. 

R1 16 bits W/R 1 General purpose register 1. 

R2 16 bits W/R 2 General purpose register 2. 

R3 16 bits W/R 3 General purpose register 3. 

ZERO 16 bits R 6 Always reads 0. 

ONE 16 bits R 7 Always reads 1. 

DS1 16 bits W/R 8 Data segment register 1. 

DS2 16 bits W/R g Data segment register 2. 

SP 16 bits W/R A Stack Pointer. 

PC 12 bits W/R - Program Counter. 

CSW 15 bits W/R - Control Status Word. 

The stack is 64 locations deep. SP is unsigned, starting with value 0, and points to the 
location after the current one. The first stack address is 0, so only 63 stack locations are 
available. 

6-1 11/6/95 



NilOOO User's Guide 

The CSW register, shown in Table 6-1, is broken into the flags shown in Table 6-2. If the 
stack overflows or underflows, the SE and IR flags will be set. If the IE flag is also set, an 
interrupt will occur. The interrupt will jump to the interrupt service routine whose address is 
stored in location FOOOft in PGFLASH. 

WARNING: One-word memory access instructions must not follow any other memory 
reference instruction. They need to be separated by other instructions, such as NOOPs. 

Table 6-2. Microcontroller Flags 

CSW Bit Number Name Abbreviation Code ($flg) 

0 Carry C 0000 

1 Zero z 0001 

2 Negative N 0010 

3 Positive P 0011 

4 Overflow 0 0100 

5 Interrupt Request IR 0101 

6 Interrupt Enable IE 0110 

7 Stack Error SE 0111 

8 General Error GE 1000 

9 Multi-Class Firing MC 1001 

10 Flash-Write FW 1010 

11 MURAM1 Ready M1 1011 

12 MURAM2 Ready M2 1100 

13 PADCU Busy DC 1101 

6.3.    Addressing Modes 

The read and write instructions support six addressing modes: 

.     Indirect OffDS with 8-bit Offset—the address is the sum of an 8-bit field in the instruction 
and either the DS1 or DS2 registers. 

•     Indirect—-the address is in RO, R1, R2, or R3. 
.      Indirect with Register Offset—the address is the sum of RO, R1, R2, or R3 and DS1 or 

DS2. 
. Indirect Autoincrement with Register Offset—the address is the sum of RO, R1, R2, or R3 

and DS1 or DS2. The general register is incremented after the operation. 
. Indirect Autodecrement with Register Offset—the address is the sum of RO, R1, R2, or R3 

and DS1 or DS2. The general register is decremented before the operation. 
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The jump instructions have the following addressing modes: 

• Immediate—the address is coded into the instruction. 
• Register—the value stored in the named register is placed in PC. 
• Relative—the value, either the named address offset or the value stored at the named 

register, is added to PC. 
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6.4.    Instruction Summary (By Functional Group) 

This section groups all the instructions according to their functions. The mnemonics and 
English descriptions are given. 

6.4.1.     Conditional Jumps 

Flag Condition Short 
Immediate 
Relative 

Register Register 
Relative 

Long 
Immediate 

Long 
Immediate 
Relative 

Unconditional JMP JMPR JMPRR JMPI JMPIR 
Carry JC JCR JCRR JCI JCIR 
Zero JZ JZR JZRR JZI JZIR 
Negative JN JNR JNRR JNI JNRI 
Positive JP JPR JPRR JPI JPIR 
Overflow JO JOR JORR JOI JOIR 
Interrupt Request JIR JIRR JIRRR JIRI JIRIR 
Interrupt Enable JIE JIER JIERR JIE! JIEIR 
Stack Error JSE JSER JSERR JSEI JSEIR 
General Error JGE JGER JGERR JGEI JGEIR 
Multi-Class Firing JMC JMCR JMCRR JMCI JMCIR 
Flash Write JFW JFWR JFWRR JFWI JFWIR 
MURAM 1 Ready JM1 JM1R JM1RR JM1I JM1IR 
MURAM 2 Ready JM2 JM2R JM2RR JM2I JM2IR 
PADCUs Busy JDC JDCR JDCRR JDCI JDCIR 
No Carry JNC JNCR JNCRR JNCI JNCIR 
No Zero JNZ JNZR JNZRR JNZI JNZIR 
No Negative JNN JNNR JNNRR JNNI JNNIR 
No Positive JNP JNPR JNPRR JNPI JNPIR 
No Overflow JNO JNOR JNORR JNOI JNOIR 
No Interrupt Request JNiR JNIRR JNIRRR JNIRI JNIRIR 
No Interrupt Enable JNIE JNIER JNIERR JNIEI JNIEIR 
No Stack Error JNSE JNSER JNSERR JNSEI JNSEIR 
No General Error JNGE JNGER JNGERR JNGEI JNGEIR 
No Multi-Class Firing JNMC JNMCR JNMCRR JNMCI JNMCIR 
No Flash Write JNFW JNFWR JNFWRR JNFWI JNFWIR 
No MURAM 1 Ready JM1 JM1R JM1RR JM1I JM1IR 
No MURAM 2 Ready JM2 JM2R JM2RR JM2I JM2IR 
No PADCUs Busy JDC JDCR JDCRR JDCI JDCIR 

Note: JNRI does not follow the normal naming convention due to a conflict with JNIR. 
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6.4.2.     Subroutine Calls 

JS Jump to Subroutine 
JSR Jump to Subroutine Register 
JSRR Jump to Subroutine Register Relative 
JSI Jump to Subroutine Immediate 
JSIR Jump to Subroutine Immediate Relative 
RETS Return from Subroutine 

6.4.3.     Stack Operations 

PUSH 
POP 

Push 
Pop 

6.4.4.     Flag Operations 

RDFLG Read Flags 
WDFLG Write Flags 
SFLGC Set Carry Flag 
SFLGZ Set Zero Flag 
SFLGN Set Negative Flag 
SFLGP Set Positive Flag 
SFLGO Set Overflow Flag 
SFLGIR Set Interrupt Request Flag 
SFLGIE Set Interrupt Enable Flag 
SFLGSE Set Stack Error Flag 
SFLGGE Set General Error Flag 
SFLGMC Set Multi-Class Firing Flag 
SFLGFW Set Flash Write Flag 
SFLGM1 Set MURAM 1 Ready Flag 
SFLGM2 Set MURAM 2 Ready Flag 
SFLGDC Set PADCUs Busy Flag 
CFLGC Clear Carry Flag 
CFLGZ Clear Zero Flag 
CFLGN Clear Negative Flag 
CFLGP Clear Positive Flag 
CFLGO Clear Overflow Flag 
CFLGIR Clear Interrupt Request Flag 
CFLGIE Clear Interrupt Enable Flag 
CFLGSE Clear Stack Error Flag 
CFLGGE Clear General Error Flag 
CFLGMC Clear Multi-Class Firing Flag 
CFLGFW Clear Flash Write Flag 
CFLGM1 Clear MURAM 1 Ready Flag 
CFLGM2 Clear MURAM 2 Ready Flag 
CFLGDC Clear PADCUs Busy Flag 
WAIT Equivalent to WAITIR 
WAITC Wait For Carry Flag 
WAITZ Wait For Zero Flag 
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WAITN Wait For 
WAITP Wait For 
WAITO Wait For 
WAITIR Wait For 
WAITIE Wait For 
WAITSE Wait For 
WAITGE Wait For 
WAITMC Wait For 
WAITFW Wait For 
WAITM1 Wait For 
WAITM2 Wait For 
WAITDC Wait For 

Negative Flag 
Positive Flag 
Overflow Flag 
Interrupt Request Flag 
Interrupt Enable Flag 
Stack Error Flag 
General Error Flag 
Multi-Class Firing Flag 
Flash Write Flag 
MURAM 1 Ready Flag 
MURAM 2 Ready Flag 
PADCUs Busy Flag 

6.4.5.     Data Transfer Operations. 

MOV Move Register to Register 
LDI Load Immediate 
RDI Read Immediate 
RDR Read Indirect Register 
RD1 Read Indexed Base Register using DS1 as base, 
RD2 Read Indexed Base Register using DS2 as base, 
RD1R Read Indexed Base Register using DS1 as base! 
RD2R Read Indexed Base Register using DS2 as base, 
RD1RI Read Indexed Base Register using DS1 as base, 
RD2RI Read Indexed Base Register using DS2 as base, 
RD1RD Read Indexed Base Register using DS1 as base, 
RD2RD Read Indexed Base Register using DS2 as base! 
WRI Write Immediate 
WRRI Write Indirect Register Immediate 
WRR Write Indirect Register 
WR1 Write Indexed Base Register using DS1 as base, 
WR2 Write Indexed Base Register using DS2 as base, 
WR1R Write Indexed Base Register using DS1 as base] 
WR2R Write Indexed Base Register using DS2 as base' 
WR1RI Write Indexed Base Register using DS1 as base, 
WR2RI Write Indexed Base Register using DS2 as base! 
WR1RD Write Indexed Base Register using DS1 as base! 
WR2RD Write Indexed Base Register using DS2 as base! 

8 bit immediate as offset. 
8 bit immediate as offset, 
named register for offset, 
named register for offset, 
named register for offset, 
named register for offset, 
named register for offset, 
named register for offset. 

8-bit immediate as offset. 
8-bit immediate as offset, 
named register for offset, 
named register for offset, 
named register for offset, 
named register for offset, 
named register for offset, 
named register for offset. 
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6.4.6.    Arithmetic and Logical Operations. 

ADD Add 
ADC Add with Carry 
SUB Subtract 
CMP Compare 
INC Increment 
DEC Decrement 
NOT Logical Negation 
OR Logical Or 
XOR Logical Exclusive Or 
SHL Shift Register Left 
SHR Shift Register Right 
ROTL Rotate Register Left 
ROTR Rotate Register Right 
NOOP No Operation 

6.5.    Instruction Set (Alphabetical) 

The instructions of the microcontroller take 0, 1, or 2 arguments. Those instructions that take 
two arguments use the following syntax, so do the machine instructions after assembling: 

operation  source,   destination 

The following notation is used in the opcodes: 

• aa—8-bit address offset, in hexadecimal. 
• r—4-bit code for registers R0-R3, Zero, One (see Table 6-1) 
.      s—4-bit code for registers R0-R3, Zero, One, DS1, DS2 (see Table 6-1) 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.1. ADC     Add with Carry 

ADC   register, register 

33rr 
RO, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

Add the contents of two registers and the carry bit, and place the 
sum in the second-named register. This is used to implement 32-bit 
arithmetic. 

ADC  R2,   Rl 
Rl  += R2  +  Carry flag; 
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• 
6.5.1.1.2.ADD     Add 

Assembler Syntax: ADD   register, register 

• 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

31 rr 
RO, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

Description: Add the contents of one register to another. Place the sum in the 
second-named register. 

• Example: 
Equivalent C code: 

ADD   Rl,    R2 

R2   +=  Rl; 

• 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.3.AND     Logical AND 

AND   register, register 

34rr 
RO, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

And two registers. Place the results in the second register. 

AND  RO,   Rl 

Rl   &=  RO; 
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6.5.1.1.4.CFLG[**] Clear Flag 

Assembler Syntax: CFLG[**] 

Opcode: 
Argument 
Words 
Clocks 
Flags Affected 

See table below 
None 
1 
2 
Specified flag (cleared) 

Description 
Sets the specified flag to 0. 

Example CFLGZ 
Equivalent C code             CSW &= !0x0C 

mnemonic Opcode description 

CFLGC 0012 Clear Cany Flag 

CFLGZ 0112 Clear Zero Flag 

CFLGN 0212 Clear Negative Flag 

CFLGP 0312 Clear Positive Flag 

CFLGO 0412 Clear Overflow Flag 

CFLGIR 0512 Clear Interrupt Request Flag 

CFLGIE 0612 Clear Interrupt Enable Flag 

CFLGSE 0712 Clear Stack Error Flag 

CFLGGE 0812 Clear General Error Flag 

CFLGMC 0912 Clear Multi-Class Firing Flag 

CFLGFW 0A12 Clear Flash Write Flag 

CFLGM1 0B12 Clear MURAM 1 Ready Flag 

CFLGM2 0C12 Clear MURAM 2 Ready Flag 

CFLGDC 0D12 Clear PADCUs Busy Flag 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.5.CMP     Compare 

CMP   subtrahend minuend 

39rr 
RO, R1, R2, R3, Zero, One 
1 
2 

Carry, Zero, Negative, Positive, Overflow 

Subtract the contents of the first-named register from the contents 
of the second-named register and set the appropriate flags. The 
remainder is not stored. 

CMP   Rl,   R2 
(R2-R1) 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.6.DEC     Decrement 

DEC   register 

28r- 
RO, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

Subtract one from the named register. 

DEC  Rl 

Rl—; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.7.INC       Increment 

INC   register 

32-r 
RO, R1, R2, R3,Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

Add one to the named register. 

INC   Rl 
R1++; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

6.5.1.1.8.J[***]    Jump on Condition 

J[***]   offset 

See table below 
[offset] value in memory or register to be added to PC 
1 
5 
Carry, Zero, Negative, Positive, Overflow 

This set of jump instructions does a relative jump of up to ±127 
words. To jump more than 127 words, use a jump immediate 
instruction, described below. 

Example: JC   2Ah 

Equivalent C code: if   (Carry) PC  +=   0x2A; 

mnemonic opcode condition of jump mnemonic opcode condition of jump 
JMP 9Faa unconditional 

JC 90aa Carry JNC 80aa No Carry 
JZ 91aa Zero JNZ 81aa No Zero 
JN 92aa Negative JNN 82aa No Negative 
JP 93 aa Positive JNP 83aa No Positive 
JO 94aa Overflow JNO 84aa No Overflow 
JIR 95aa Interrupt Request JNIR 85aa No Interrupt Request 
JIE 96aa Interrupt Enable JNIE 86aa No Interrupt Enable 
JSE 97aa Stack Error JNSE 87aa No Stack Error 
JGE 98aa General Error JNGE 88aa No General Error 
JMC 99aa Multi-Class Firing JNMC 89aa No Multi-Class Firing 
JFW 9Aaa Flash Write JNFW 8Aaa No Flash Write 
JM1 9Baa MURAM 1 Ready JNM1 8Baa No MURAM 1 Ready 
JM2 9Caa MURAM2Ready JNM2 8Caa No MURAM 2 Ready 
JDC 9Daa PADCUs Busy JNDC 8Daa No PADCUs Busy 
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6.5.1.1.9.J[***]I    Jump on Condition to Immediate 
Address 

Assembler Syntax: J["*]l   address 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

See table below 
Address 
2 
6 
None 

Description: Jumps to the address specified in the instruction. The jump can be 
to any place within the PGFLASH. 

Example: 
Equivalent C code: 

JNOI 2Bllh 
if (! Overflow) PC = 0x2Bll; 

mnemonic 

JMPI 

JCI 

JZI 

JNI 

JPI 

JOI 

JIRI 

JIEI 

JSEI 

JGEI 

JMCI 

JFWI 

JM1I 

JM2I 

JDCI 

Opcode 

DF61 

D061 

D161 

D261 

D361 

D461 

D561 

D661 

D761 

D861 

D961 

DA61 

DB61 

DC61 

DD61 

condition of jump 

Unconditional 

Carry 

Zero 

Negative 

Positive 

Overflow 

Interrupt Request 

Interrupt Enable 

Stack Error 

General Error 

Multi-Class Firing 

Flash Write 

MURAM 1 Ready 

MURAM2Ready 

PADCUs Busy 

mnemonic opcode condition of jump 

JNCI C061 No Carry 

JNZI C16I No Zero 

JNNI C261 No Negative 

JNPI C361 No Positive 

JNOI C461 No Overflow 

JNIRI C561 No Interrupt Request 
JNIEI C661 No Interrupt Enable 
JNSEI C761 No Stack Error 
JNGEI C861 No General Error 
JNMCI C961 No Multi-Class Firing 
JNFWI CA61 No Flash Write 

JNM1I CB61 No MURAM 1 Ready 
JNM2I CC61 No MURAM 2 Ready 
JNDCI CD61 No PADCUs Busy 
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6.5.1.1.10.J[***]IR Jump on Condition to 
Immediate Relative 

Assembler Syntax: J[***]IR   offset 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

See table below 
Offset 
2 
6 
Carry, Zero, Negative, Positive, Overflow 

Description: Performs a relative jump to the address specified in the instruction; 
the address specified will be added to the PC. The jump can be to 
any place within the PGFLASH. 

Example: JSEIR  1234h 

Equivalent C code: if   (Stack Error)   PC += =   0x1234 / 

mnemonic opcode condition of jump mnemonic opcode condition of jump 

JMPIR DF61 Unconditional 

JCIR D0C1 Cany JNCIR C0C1 No Carry 

JZIR D1C1 Zero JNZIR C1C1 No Zero 

JNRI D2C1 Negative JNNIR C2C1 No Negative 

JPIR D3C1 Positive JNPIR C3C1 No Positive 

JOIR D4C1 Overflow JNOIR C4C1 No Overflow 

JIRIR D5C1 Interrupt Request JNIRIR C5C1 No Interrupt Request 

JIEIR D6C1 Interrupt Enable JNIEIR C6C1 No Interrupt Enable 

JSEIR D7C1 Stack Error JNSEIR C7C1 No Stack Error 

JGEIR D8C1 General Error JNGEIR C8C1 No General Error 

JMCIR D9C1 Multi-Class Firing JNMCIR C9C1 No Multi-Class Firing 
JFWIR DAC1 Flash Write JNFWIR CAC1 No Flash Write 
JM1IR DBC1 MURAM 1 Ready JNM1IR CBC1 No MURAM 1 Ready 
JM2IR DCC1 MURAM 2 Ready JNM2IR CCC1 No MURAM 2 Ready 
JDCIR DDC1 PADCUs Busy JNDCIR CDC1 No PADCUs Busy 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

6.5.1.1.11.J[***]R Jump on Condition to Register 

J[***]R   register 

See table below 
RO, R1, R2, R3, Zero, or One 
1 
5 
None 

Sets the program counter to the address contained in one of the 
following registers: RO, R1, R2, R3, Zero, One. 

Example: JNM1R  RO 

Equivalent C code: if   (No MURAM 1  Ready) PC  =  RO '• 

mnemonic opcode condition of jump mnemonic opcode condition of jump 
JMPR BF6r Unconditional 
JCR B06r Carry JNCR A06r No Carry 
JZR B16r Zero JNZR A16r No Zero 
JNR B26r Negative JNNR A26r No Negative 
JPR B36r Positive JNPR A36r No Positive 
JOR B46r Overflow JNOR A46r No Overflow 
JIRR B56r Interrupt Request JNIRR A56r No Interrupt Request 
JIER B66r Interrupt Enable JNIER A66r No Interrupt Enable 
JSER B76r Stack Error JNSER A76r No Stack Error 
JGER B86r General Error JNGER A86r No General Error 
JMCR B96r Multi-Class Firing JNMCR A96r No Multi-Class Firing 
JFWR BA6r Flash Write JNFWR AA6r No Flash Write 
JM1R BB6r MURAM 1 Ready JNM1R AB6r No MURAM 1 Ready 
JM2R BC6r MURAM 2 Ready JNM2R AC6r No MURAM 2 Ready 
JDCR BD6r PADCUs Busy JNDCR AD6r No PADCUs Busy 
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6.5.1.1 12.J[***]RR 
Relative 

Jump on Condition to Register 

Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

J[***]RR   register 

See table below 
RO, R1, R2, R3, Zero, One 
1 
5 
Carry, Zero, Negative, Positive, Overflow 

Performs a relative jump to the address contained in a register - 
that is, the contents of the register will be added to the PC. The 
register can be RO, R1, R2, R3, Zero, One. 

Example: JIERR RO 

Equivalent C code: if   (Interrupt Enable) PC  += RO; 

mnemonic opcode condition of jump mnemonic opcode condition of jump 

JMPRR BFCr Unconditional 

JCRR BOCr Cany JNCRR AOCr No Carry 

JZRR BICr Zero JNZRR AlCr No Zero 

JNRR B2Cr Negative JNNRR A2Cr No Negative 

JPRR B3Cr Positive JNPRR A3Cr No Positive 

JORR B4Cr Overflow JNORR A4Cr No Overflow 

JIRRR B5Cr Interrupt Request JNIRRR A5Cr No Interrupt Request 

JIERR B6Cr Interrupt Enable JNIERR A6Cr No Interrupt Enable 

JSERR B7Cr Stack Error JNSERR A7Cr No Stack Error 

JGERR B8Cr General Error JNGERR A8Cr No General Error 

JMCRR B9Cr Multi-Class Firing JNMCRR A9Cr No Multi-Class Firing 

JFWRR BACr Flash Write JNFWRR AACr No Flash Write 

JM1RR BBCr MURAM1 Ready JNM1RR ABCr No MURAM 1 Ready 

JM2RR BCCr MURAM2Ready JNM2RR ACCr No MURAM 2 Ready 

JDCRR BDCr PADCUs Busy JNDCRR ADCr No PADCUs Busy 
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Assembler Syntax: 

6.5.1.1.13. JS      Jump to Subroutine 

JS   subroutine 

Opcode: EOaa 
Argument: 
Words: 

Subroutine name or memory location 
1 

Clocks: 6 
Flags Affected: None 

Description: 

Example: 
Equivalent C code: 

This is the basic subroutine call mechanism. The return address 
(in this case, the current program counter) is pushed onto the 
stack, then the jump to the subroutine is executed. After completion 
of the subroutine, the PC is taken from the stack. The jump can be 
up to ±127 words. Use JSI for longer jumps. 

JS CheckForErrors 
Stack [++SP] = PC- 
PC  +=   (offset  to  CheckForErrors); 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.14.JSI      Jump to Subroutine Immediate 

JSI   subroutine 

E860 
Subroutine or memory location 
2 
8 
None 

The PC is pushed onto the stack, then the jump is executed. The 
immediate address will be loaded into the PC. The subroutine may 
be anywhere within the PGFLASH. 

JSI CheckMathUnit 

Stack[++SP] = PC; PC = SCheckPathUnit; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

6.5.1.1.15.JSIR   Jump to Subroutine Immediate Relative 

JSIR   offset 

E8C0 
Address offset 
2 
8 
Carry, Zero, Negative, Positive, Overflow 

The PC is pushed onto the stack, then the jump is executed. The 
immediate offset will be added to the PC. The subroutine may be 
anywhere within the PGFLASH. 

Example: 
Equivalent C code: 

JSIR   1234h 
Stack [++SP]   =  PC- PC  +=   0x1234; 

11/6/95 6-22 



NMOOO User's Guide 

Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.16.JSR    Jump to Subroutine Register 

JSR   register 

E46r 
RO, R1, R2, R3, Zero, One 
1 
6 
None 

The PC is pushed onto the stack, then the jump is executed. The 
named register contains the address of the subroutine. 

JSR  RO 

Stack[++SP]   =  PC;   PC  =  RO; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.17.JSRR Jump to Subroutine Register Relative 

JSRR   register 

E4Cr 
RO, R1, R2, R3, Zero, or One 
1 
6 
Carry, Zero, Negative, Positive, Overflow 

The PC is pushed onto the stack, then the jump is executed. The 
contents of the named register will be added to the PC. 

JSRR  Rl 

Stack[++SP]   =  PC;   PC  +=  Rl; 
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Assembler Syntax: 

Opcode: 
Arguments: 

Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.18.LDI     Load Immediate 

LDI   data, register 

0r14 
[data] hexadecimal value or symbol 
register RO, R1, R2, R3, Zero, One, DS1, DS2, orSP 
2 
4 
None 

Copy immediate data to register 

LDI   1234h,   RO 
RO  =  0x1234; 
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Assembler Syntax: 

Opcode: 
Arguments: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.19.MOV   Move Registerto Register 

MOV   source register, destination register 

12rr 
RO, R1, R2, R3, Zero, One, DS1, DS2, orSP 
1 
2 
None 

Copy register to register. 

MOV RO,   Rl 

Rl   =  RO; 
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6.5.1.1.20.NOOP No Operation 

Assembler Syntax: NOOP 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

0000 
None 
1 
2 
None 

Description: The NOOPinstruction performs no operation. 

Example: NOOP 

Equivalent C code: None 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.21.NOT   Logical Negation 

NOT   register 

26r- 
RO, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

Negate a register. 

NOT  RO 

RO   =   !R0; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.22.0R      Logical OR 

OR   register, register 

35rr 
RO, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

Or two registers. Place the results in the second register. 

OR  RO,   Rl 

Rl   |=  RO; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.23.POP   Pop Register off Stack 

POP   register 

0r04 
Register R0, R1, R2, R3, Zero, One, or SP 
1 
2 
None 

Pop a register off of the stack. 

POP  R0 

R0   =  STACKfSP—•] ; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.24.PUSH Push Register onto Stack 

PUSH   register 

0r02 
Register RO, R1, R2, R3, Zero, One, or SP 
1 
2 
None 

Push a register onto the stack. 

PUSH  RO 
STACK[++SP]   =  RO; 
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6.5.1.1.25.RD[***] Read Indexed Base Register 

Assembler Syntax: 

Opcode: 
Argument: 

Words: 
Clocks: 
Flags Affected: 

Description: 

Example 1: 
Equivalent C code: 

Example 2: 
Equivalent C code: 

RD[***]   data 
RD[***j   register 

See table below 
[data] hexadecimal value or symbol 
register RO, R1, R2, R3, Zero, or One 
1 
4 
Carry, Zero, Negative, Positive, Overflow 

Copy from memory address indexed from base register to register. 
The base address is stored in either DS1 or DS2. The offset is 8- 
bit immediate data or stored in one of R0-R3. The offset is ORed 
with the base to generate the memory address. Available 
instructions are shown below. The intended usage has the low 
order byte of the base address equal to 0. 

RDl 115 

RO = *(DS1 115); 

RD2RI RO, Rl 

Rl = *(DS2 I R0++) 

mnemonic 

RDl 

RD2 
RD1R 

RD2R 

RD1RI 

RD2RI 

RD1RD 

RD2RD 

Opcode description 

42aa Read indexed base register using DS1 as base, 

41 aa Read indexed base register using DS2 as base, 

52sr Read indexed base register using DS 1 as base, 

51 sr Read indexed base register using DS2 as base, 

56sr Read indexed base register using DS 1 as base, 

5 5 sr Read indexed base register using DS2 as base, 

5 Asr Read indexed base register using DS 1 as base, 

59sr Read indexed base register using DS2 as base, 

8-bit immediate as offset. Store in RO. 

8-bit immediate as offset. Store in RO. 

named register for offset, 

named register for offset, 

named register for offset, post-increment offset, 

named register for offset, post-increment offset, 

named register for offset, post-decrement offset, 

named register for offset, post-decrement offset. 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.26.RDFLG Read Flags 

RDFLG   register 

10Bs 
RO, R1, R2, orR3 
1 
2 
None 

Copy the controller status word into a register (R0-R3). 

RDFLG RO 

RO  =  CSW; 
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Assembler Syntax: 

Opcode: 
Argument: 

Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.27.RDI     Read Immediate 

RDI   data, register 

430r 
[data] hexadecimal value or symbol 
register RO, R1, R2, R3, Zero, One, DS1, DS2, orSP 
2 
6 
None 

Copy memory to register. 

RDI   1234h,   RO 
RO  =  *(0x1234); 
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Assembler Syntax: 

Opcode: 
Arguments: 

Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.28.RDR   Read Indirect Register 

RDR   memory location, register 

50sr 
[memory location] hexadecimal value or symbol 
register RO, R1, R2, R3, Zero, One, or SP 
1 
4 
None 

Copy memory to register. 

RDR  RO,   Rl 

Rl  =   *R0; 
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Assembler Syntax: 

6.5.1.1.29.RETS Return from Subroutine 

RETS 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

0706 
None 
1 
4 
None 

Description: 

Example: 
Equivalent C code: 

The return address is popped off the stack, then the jump is made. 
The return address may be up to 65,536 words away. 

RETS 
PC  =  Stack [SP—]   +   1; 
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Assembler Syntax: 

6.5.1.1.30.ROTL/ROTR     Rotate Register 

ROTL  register 
ROTR   register 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

ROTL = 2Fr-, ROTR = 2Er- 
R0, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

ROTR: rotate the register right, LSB goes to MSB. 
ROTL: rotate the register left, MSB goes to LSB. 

ROTR  R0 
lsb  =  R0   &   1;   R0   »=1;   RO   &=  0x7FFF; 
if   (   lsb   )   RO   |=   0x8000; 
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6.5.1.1.31.SFLGH Set Flag 

Assembler Syntax: SFLG[**] 

Opcode: See table below 
Argumen • None 
Words: 1 
Clocks: 2 
Flags Affected: Named flag 

Description: Sets the specifie 

Example: SFLGC 

Equivalent C code:           csw |= 0x000 

mnemonic Opcode description 

SFLGC 0010 Set Cany Flag 

SFLGZ 0110 Set Zero Flag 
SFLGN 0210 Set Negative Flag 
SFLGP 0310 Set Positive Flag 
SFLGO 0410 Set Overflow Flag 
SFLGIR 0510 Set Interrupt Request Flag 
SFLGIE 0610 Set Interrupt Enable Flag 
SFLGSE 0710 Set Stack Error Flag 
SFLGGE 0810 Set General Error Flag 
SFLGMC 0910 Set Multi-Class Firing Flag 
SFLGFW 0A10 Set Flash Write Flag 
SFLGM1 OB10 Set MURAM 1 Ready Flag 
SFLGM2 0C10 Set MURAM 2 Ready Flag 
SFLGDC ODIO Set PADCUs Busy Flag 

1=  0x0001;   /*   set  carry flag  */ 
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Assembler Syntax: 

6.5.1.1.32.SHL/SHR Shift Register 

SHL   register 
SHR  register 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

SHL = 2Dr-, SHR = 2Cr- 
RO, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

SHR: shift the register right, LSB goes to carry bit, MSB = 0. 
SHL: shift the register left, MSB goes to carry bit, LSB = 0. 

SHR  R0 

RO  »=  1; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.33.SUB    Subtract 

SUB   subtrahend, minuend 

29rr 
RO, R1, R2, R3, Zero, One 
1 
2 
Carry, zero, negative, positive, overflow 

Subtract the contents of the first-named register from the contents 
of the second-named register and place the remainder in the 
second-named register. 

SUB   R3,    RO 

RO   -=  R3; 
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Assembler Syntax: 

6.5.1.1.34.WAIT[**] Wait for Flag 

WAIT[* 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

See table below 
None 
1 

as many as it takes 
None 

Description: This set of instructions waits for a particular flag to become 1. 
Normally, you would only use the instructions WAITIR, WAITFW, 
WAITMU. 

Example: 
Equivalent C code: 

WAITIR 
while( (CSW & 0x0020) != 1 ); /* wait for 
interrupt request */ 

mnemonic Opcode 

WAIT 050A 

WAITC 000A 

WAITZ 010A 

WAITN 020A 

WAITP 030A 

WAITO 040A 

WAITIR 050A 

WAITIE 060A 

WAITSE 070A 

WAITGE 080A 

WAITMC 090A 

WAITFW 0A0A 

WAITM1 0B0A 

WAITM2 0C0A 

WAITDC 0D0A 

description 

Equivalent to WAITIR 

Wait For Cany Flag 

Wait For Zero Flag 

Wait For Negative Flag 

Wait For Positive Flag 

Wait For Overflow Flag 

Wait For Interrupt Request Flag 

Wait For Interrupt Enable Flag 

Wait For Stack Error Flag 

Wait For General Error Flag 

Wait For Multi-Class Firing Flag 

Wait For Flash Write Flag 

Wait For MURAM 1 Ready Flag 

Wait For MURAM 2 Ready Flag 

Wait For PADCUs Busy Flag 
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Assembler Syntax: 

Opcode: 
Argument: 

Words: 
Clocks: 
Flags Affected: 

Description: 

Example 1: 
Equivalent C code: 

Example 2: 
Equivalent C code: 

6.5.1.1.35.WR[***] Write Indexed Base Register 

WR[***]   data or WR[***]   register 

See table below 
[data] hexadecimal value or symbol 
register R0, R1, R2, R3 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

Copy from register to memory address indexed from base register. 
The base address is stored in either DS1 or DS2. The offset is 8- 
bit immediate data or stored in one of R0-R3. The offset is ORed 
with the base to generate the memory address. Available 
instructions are shown below. 

WR2 165 
*(DS2 | 165) = RO; 

WR1RI R2, Rl 
*(DS2 | R1++) = R2; 

mnemonic Opcode description 

WR1 62aa Write indexed base register using DS1 as base, 

WR2 61 aa Write indexed base register using DS2 as base, 

WR1R 72sr Write indexed base register using DS 1 as base, 

WR2R 71 sr Write indexed base register using DS2 as base, 

WR1RI 76sr Write indexed base register using DS 1 as base, 

WR2RI 75sr Write indexed base register using DS2 as base, 

WR 1RD 7 Asr Write indexed base register using DS 1 as base, 

WR2RD 79sr Write indexed base register using DS2 as base. 

8-bit immediate as offset. Source in RO. 

8-bit immediate as offset Source in RO. 

named register for offset, 

named register for offset, 

named register for offset, post-increment offset 

named register for offset, post-increment offset, 

named register for offset, post-decrement offset, 

named register for offset, post-decrement offset. 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.36.WRFLG Write Flags 

WRFLG register 

10sB 
R0, R1, R2, orR3 
1 
2 
All 

Copy a register (R0-R3) into the controller status word. 

WDFLG  R2 

CSW =  R2; 
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Assembler Syntax: 

Opcode: 
Argument: 

Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.37.WRI    Write Immediate 

WRI   register, memory location 

630r 
register RO, R1, R2, R3, Zero, One, or SP 
[memory location] hexadecimal address or symbol 
2 
4 
None 

Copy register to memory. 

WRI   RO,    1234h 
* (0x1234)   = RO; 
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Assembler Syntax: 

Opcode: 
Argument: 

Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.38.WRR Write Indirect Register 

WRR   source, destination 

70sr 
[source] RO, R1, R2, R3, Zero, One 
[destination] RO, R1, R2, R3 
1 
2 
None 

Copy register to memory. Destination address must be in RO - R3. 

WRR  RO,   Rl 

*R1   =  RO; 
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6.5.1.1.39.WRRI Write Indirect Register Immediate 

Assembler Syntax: WRRI   data, register 

Opcode: 
Argument: 

Words: 
Clocks: 
Flags Affected: 

73s0 
[data] hexadecimal value or symbol 
[register] register containing memory address 
2 
4 
None 

Description: Copy immediate data to memory indirect. 

Example: 
Equivalent C code: 

WRRI   1234h,   Rl 

*R1  =  0x1234; 
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Assembler Syntax: 

Opcode: 
Argument: 
Words: 
Clocks: 
Flags Affected: 

Description: 

Example: 
Equivalent C code: 

6.5.1.1.40.XOR   Logical Exclusive OR 

XOR register register 

37rr 

RO, R1, R2, R3, Zero, or One 
1 
2 
Carry, Zero, Negative, Positive, Overflow 

XOR two registers. Place the results in the second register. 

XOR  RO,   Rl 

Rl   A= RO; 
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6.6.    Flags Cross Reference 

Table 6-3 lists all the instructions with the mnemonics, opcode, English description and the 
flags affected by each instruction. The flag abbreviations are: 

c =   Carry SE = Stack Error 
z =   Zero GE = General Error 
N =   Negative MC = Multi-Class Firing 
P =   Positive FW = Flash Write 
0 =   Overflow M1 = MURAM 1 Ready 
IK =   Interrupt Request M2 = MURAM 2 Ready 
lb =   Interrupt Enable DC = PADCUs Busy 

Table 6-3. Flags Cross-Reference 

Mnemonic Opcode Description C Z N P O IR IE SE GE MC FW M1 M2 DC 

ADC 33rr Add with Carry 

ADD 31 rr Add 

AND 34rr Logical AND 

CFLGC 0012 Clear Carry Flag ■ 
CFLGDC 0D12 Clear PADCUs Busy Flag ■ 
CFLGFW 0A12 Clear Flash Write Flag ■ 
CFLGGE 0812 Clear General Error Flag ■ 
CFLGIE 0612 Clear Interrupt Enable Flag ■ 
CFLGIR 0512 Clear Interrupt Request Flag ■ 
CFLGM1 0B12 Clear MURAM 1 Ready Flag ■ 
CFLGM2 0C12 Clear MURAM 2 Ready Flag ■ 
CFLGMC 0912 Clear Multi-Class Firing Flag ■ 
CFLGN 0212 Clear Negative Flag ■ 
CFLGO 0412 Clear Overflow Flag ■ 
CFLGP 0312 Clear Positive Flag ■ 
CFLGSE 0712 Clear Stack Error Flag ■ 
CFLGZ 0112 Clear Zero Flag ■ 
CMP 39rr Compare 

DEC 28r- Decrement 

INC 32-r Increment 

JC 90aa Jump on Carry 

JCI D061 Jump on Carry to Immediate 

Address 

JCIR D0C1 Jump on Carry to Immediate 

Relative 

JCR B06r Jump on Carry to Register 

JCRR BOCr Jump on Carry to Register Relative 

JDC 9Daa      | Jump on PADCUs Busy 
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Mnemonic Opcode Description C z N P 0 IR IE SE GE MC FW M1 M2 DC 

JDCI DD61 Jump on PADCUs Busy to 

Immediate Address 

JDCIR DDC1 Jump on PADCUs Busy to 

Immediate Relative 

JDCR BD6r Jump on PADCUs Busy to 

Register 

JDCRR BDCr Jump on PADCUs Busy to 

Register Relative 

JFW 9Aaa Jump on Flash Write 

JFWI DA61 Jump on Flash Write to Immediate 

Address 

JFWIR DAC1 Jump on Flash Write to Immediate 

Relative 

JFWR BA6r Jump on Flash Write to Register 

JFWRR BACr Jump on Flash Write to Register 

Relative 

JGE 98aa Jump on General Error 

JGEI D861 Jump on General Error to 

Immediate Address 

JGEIR D8C1 Jump on General Error to 

Immediate Relative 

JGER B86r Jump on General Error to Register 

JGERR B8Cr Jump on General Error to Register 

Relative 

JIE 96aa Jump on Interrupt Enable 

JIEI D661 Jump on Interrupt Enable to 

Immediate Address 

JIEIR D6C1 Jump on Interrupt Enable to 

Immediate Relative 

JIER B66r Jump on Interrupt Enable to 

Register 

JIERR B6Cr Jump on Interrupt Enable to 

Register Relative 

JIR 95aa Jump on Interrupt Request 

JIRI D561 Jump on Interrupt Request to 

Immediate Address 

JIRIR D5C1 Jump on Interrupt Request to 

Immediate Relative 

JIRR B56r Jump on Interrupt Request to 

Register 
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Mnemonic Opcode Description C z N P O IR IE SE GE MC FW M1 M2 DC 

JIRRR BSCr Jump on Interrupt Request to 

Register Relative 

JM1 9Baa Jump on MURAM 1 Ready 

JM1I DB61 Jump on MURAM 1 Ready to 

Immediate Address 

JM1IR DBC1 Jump on MURAM 1 Ready to 

Immediate Relative 

JM1R BB6r Jump on MURAM 1 Ready to 

Register 

JM1RR BBCr Jump on MURAM 1 Ready to 

Register Relative 

JM2 9Caa Jump on MURAM 2 Ready 

JM2I DC61 Jump on MURAM 2 Ready to 

Immediate Address 

JM2IR DCC1 Jump on MURAM 2 Ready to 

Immediate Relative 

JM2R BC6r Jump on MURAM 2 Ready to 

Register 

JM2RR BCCr Jump on MURAM 2 Ready to 

Register Relative 

JMC 99aa Jump on Multi-Class Firing 

JMCI D961 Jump on Multi-Class Firing to 

Immediate Address 

JMCIR D9C1 Jump on Multi-Class Firing to 

Immediate Relative 

JMCR B96r Jump on Multi-Class Firing to 

Register 

JMCRR B9Cr Jump on Multi-Class Firing to 

Register Relative 

JMP 9Faa Jump Unconditional 

JMPI DF61 Jump Unconditional to Immediate 

Address 

JMPIR DFC1 Jump Unconditional to Immediate 

Relative 

JMPR BF6r Jump Unconditional to Register 

JMPRR BFCr Jump Unconditional to Register 

Relative 

JN 92AA Jump on Negative 

JNC 80aa Jump on No Carry 

JNCI C061 Jump on No Cany to Immediate 

Address 
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Mnemonic Opcode Description C Z N P O IR IE SE GE MC FW M1 M2 DC 

JNCIR C0C1 Jump on No Carry to Immediate 

Relative 

JNCR A06r Jump on No Carry to Register 

JNCRR AOCr Jump on No Carry to Register 

Relative 

JNDC 8Daa Jump on No PADCUs Busy 

JNDCI CD61 Jump on No PADCUs Busy to 

Immediate Address 

JNDCIR CDC1 Jump on No PADCUs Busy to 

Immediate Relative 

JNDCR AD6r Jump on No PADCUs Busy to 

Register 

JNDCRR ADCr Jump on No PADCUs Busy to 

Register Relative 

JNFW 8Aaa Jump on No Flash Write 

JNFWI CA61 Jump on No Flash Write to 

Immediate Address 

JNFWIR CAC1 Jump on No Flash Write to 

Immediate Relative 

JNFWR AA6r Jump on No Flash Write to 

Register 

JNFWRR AACr Jump on No Flash Write to 

Register Relative 

JNGE 88aa Jump on No General Error 

JNGEI C861 Jump on No General Error to 

Immediate Address 

JNGEIR C8C1 Jump on No General Error to 

Immediate Relative 

JNGER A86r Jump on No General Error to 

Register 

JNGERR A8Cr Jump on No General Error to 

Register Relative 

JNI D261 Jump on Negative to Immediate 

Address 

JNIE 86aa Jump on No Interrupt Enable 

JNIEI C661 Jump on No Interrupt Enable to 

Immediate Address 

JNIEIR C6C1 Jump on No Interrupt Enable to 

Immediate Relative 

JNIER A66r Jump on No Interrupt Enable to 

Register 
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Mnemonic Opcode Description C z N P 0 IR IE SE GE MC FW M1 M2 DC 

JNIERR A6Cr Jump on No Interrupt Enable to 

Register Relative 

JNIR 85aa Jump on No Interrupt Request 

JNIRI C561 Jump on No Interrupt Request to 

Immediate Address 

JNIRIR C5C1 Jump on No Interrupt Request to 

Immediate Relative 

JNIRR A56r Jump on No Interrupt Request to 

Register 

JNIRRR A5Cr Jump on No Interrupt Request to 

Register Relative 

JNM1 8Baa Jump on No MURAM 1 Ready 

JNM1I CB61 Jump on No MURAM 1 Ready to 

immediate Address 

JNM1IR CBC1 Jump on No MURAM 1 Ready to 

Immediate Relative 

JNM1R AB6r Jump on No MURAM 1 Ready to 

Register 

JNM1RR ABCr Jump on No MURAM 1 Ready to 

Register Relative 

JNM2 8Caa Jump on No MURAM 2 Ready 

JNM2I CC61 Jump on No MURAM 2 Ready to 

Immediate Address 

JNM2IR CCC1 Jump on No MURAM 2 Ready to 

Immediate Relative 

JNM2R AC6r Jump on No MURAM 2 Ready to 

Register 

JNM2RR ACCr Jump on No MURAM 2 Ready to 

Register Relative 

JNMC 89aa Jump on No Multi-Class Firing 

JNMCI C961 Jump on No Multi-Class Firing to 

Immediate Address 

JNMCIR C9C1 Jump on No Multi-Class Firing to 

mmediate Relative 

JNMCR A96r Jump on No Multi-Class Firing to 

Register 

JNMCRR A9Cr Jump on No Multi-Class Firing to 

Register Relative 

JNN 82aa Jump on No Negative 

JNNI C261 Jump on No Negative to Immediate 

Address 
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Mnemonic Opcode Description C Z N P O IR IE SE GE MC FW M1 M2 DC 

JNNIR C2C1 Jump on No Negative to Immediate 

Relative 

JNNR A26r Jump on No Negative to Register 

JNNRR A2Cr Jump on No Negative to Register 

Relative 

JNO 84aa Jump on No Overflow 

JNOI C461 Jump on No Overflow to 

Immediate Address 

JNOIR C4C1 Jump on No Overflow to 

Immediate Relative 

JNOR A46r Jump on No Overflow to Register 

JNORR A4Cr Jump on No Overflow to Register 

Relative 

JNP 83aa Jump on No Positive 

JNPI C361 Jump on No Positive to Immediate 

Address 

JNPIR C3C1 Jump on No Positive to Immediate 

Relative 

JNPR A36r Jump on No Positive to Register 

JNPRR A3Cr Jump on No Positive to Register 

Relative 

JNR B26R Jump on Negative to Register 

JNRI D2C1 Jump on Negative to Immediate 

Relative 

JNRR B2Cr Jump on Negative to Register 

Relative 

JNSE 87aa Jump on No Stack Error 

JNSEI C761 Jump on No Stack Error to 

Immediate Address 

JNSEIR C7C1 Jump on No Stack Error to 

Immediate Relative 

JNSER A76r Jump on No Stack Error to 

Register 

JNSERR A7Cr Jump on No Stack Error to 

Register Relative 

JNZ 81 aa Jump on No Zero 

JNZI C161 Jump on No Zero to Immediate 

Address 

JNZIR C1C1 Jump on No Zero to Immediate 

Relative 

JNZR A16r Jump on No Zero to Register 
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Mnemonic - Opcode Description C z N P O IR IE SE GE MC FW M1 M: DC 

JNZRR A1Cr Jump on No Zero to Register 

Relative 

JO 94aa Jump on Overflow 

JOI D461 Jump on Overflow to Immediate 

Address 

JOIR D4C1 Jump on Overflow to Immediate 

Relative 

JOR B46r Jump on Overflow to Register 

JORR B4Cr Jump on Overflow to Register 

Relative 

JP 93aa Jump on Positive 

JPI D361 Jump on Positive to Immediate 

Address 

JPIR D3C1 Jump on Positive to Immediate 

Relative 

JPR B36r Jump on Positive to Register 

JPRR B3Cr Jump on Positive to Register 

Relative 

JS EOaa Jump to Subroutine 

JSE 97aa Jump on Stack Error 

JSEI D761 Jump on Stack Error to Immediate 

Address 

JSEIR D7C1 Jump on Stack Error to Immediate 

Relative 

JSER B76r Jump on Stack Error to Register 

JSERR B7Cr Jump on Stack Error to Register 

Relative 

JSI E860 Jump to Subroutine Immediate 

JSIR E8C0 Jump to Subroutine Immediate 

Relative 

JSR E46r Jump to Subroutine Register 

JSRR E4Cr Jump to Subroutine Register 

Relative 

JZ 91 aa Jump on Zero 

JZI D161 Jump on Zero to Immediate 

Address 

JZIR D1C1 Jump on Zero to Immediate 

Relative 

JZR B16r Jump on Zero to Register 

JZRR B1Cr Jump on Zero to Register Relative 

LDI DM4 .oad Immediate 
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Mnemonic Opcode Description C Z N P O IR IE SE GE MC FW M1 M2 DC 

MOV 12rr Move Register to Register 

NOOP 0000 No Operation 

NOT 26r- Logical Negation 

OR 35rr Logical OR 

POP 0rO4 Pop Register off Stack 

PUSH 0cO2 Push Register onto Stack 

RD1 42dd Read Indexed Base Register 1 

Immediate 

RD1R 52rr Read Indexed Base Register 1 

Register 

RD1RD 5Arr Read-Post-Decrement Indexed 

Base Register 1 Register 

RD1RI 56rr Read-Post-Increment Indexed 

Base Register 1 Register 

RD2 41dd Read Indexed Base Register 2 

Immediate 

RD2R 51rr Read Indexed Base Register 2 

Register 

RD2RD 59rr Read-Post-Decrement Indexed 

Base Register 2 Register 

RD2RI 55rr Read-Post-Increment Indexed 

Base Register 2 Register 

RDFLG 10Br Read Flags 

RDI 430r Read Immediate 

RDR 50rr Read Indirect Register 

RETS 0706 Return from Subroutine 

ROTL 2Fr- Left Rotate Register 

ROTR 2Er- Right Rotate Register 

SFLGC 0010 Set Carry Flag ■ 
SFLGDC 0D10 Set PADCUs Busy Flag ■ 
SFLGFW 0A10 Set Flash Write Flag ■ 
SFLGGE 0810 Set General Error Flag ■ 
SFLGIE 0610 Set Interrupt Enable Flag ■ 
SFLGIR 0510 Set Interrupt Request Flag ■ 
SFLGM1 0B10 Set MURAM 1 Ready Flag ■ 
SFLGM2 0C10 Set MURAM 2 Ready Flag ■ 
SFLGMC 0910 Set Multi-Class Firing Flag ■ 
SFLGN 0210 Set Negative Flag ■ 
SFLGO 0410 [Set Overflow Flag ■ 
SFLGP 0310       | Set Positive Flag ■ 
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Mnemonic Opcode Description C z N P 0 IR IE SE " GE MC FW M1 M; ! DC 

SFLGSE 0710 Set Stack Error Flag ■ 
SFLGZ 0110 Set Zero Flag 

SHL 2Dr- Left Shift Register 

SHR 2Cr- Right Shift Register 

SUB 29rr Subtract 

WAIT 050A Wait for Interrupt Request Flag 

WAITC OOOA Wait for Carry Flag 

WAITDC 0D0A Wait for PADCUs Busy Flag 

WAITFW 0A0A Wait for Flash Write Flag 

WAITGE 080A Wait for General Error Flag 

WAITIE 060A Wait for Interrupt Enable Flag 

WAITM1 0B0A Wait for MURAM 1 Ready Flag 

WAITM2 OCOA Wait for MURAM 2 Ready Flag " 
WAITMC 090A Wait for Multi-Class Firing Flag 

WAITN 020A Wait for Negative Flag 

WAITO 040A Wait for Overflow Flag 

WAITP 030A Wait for Positive Flag 

WAITSE 070A Wait for Stack Error Flag 

WAITZ 010A Wait for Zero Flag 

WR1 62dd Write Indexed Base Register 1 

Immediate 

WR1R 72rr Write Indexed Base Register 1 

Register 

WR1RD 7Arr Write Post-Decrement Indexed 

Base Register 1 Register- 

WR1RI 76rr Write Post-Increment Indexed 

Base Register 1 Register- 

WR2 61 dd Write-lndexed Base Register 2 

mmediate 

WR2R 71 rr Write-lndexed Base Register 2 

Register 

WR2RD 79rr Write Post-Decrement Indexed 

Base Register 2 Register- 

WR2RI 75rr Write Post-Increment Indexed 

Base Register 2 Register- 

WRFLG 10rB l/Vrite Flags 

WRI 530r Write Immediate 

WRR 70rr Write Indirect Register 

WRRI 73r0        \ /Vrite Indirect Register Immediate 

XOR 37rr .ogical Exclusive OR 
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6.7.    Interrupt Handling 

The Nil000 on-chip microcontroller has a single interrupt vector at address FOOOh, which is 
the beginning of the microcontroller program memory PGFLASH. The program counter PC is 
initialized to 1 instead of 0 for this reason. 

The microcontroller interrupt request (IR) flag, which is CSW[5], is set when one of the 
following occurs: 

The host writes to the CMR register. 
The host writes to the MR register. 
The host asserts the MCINT# pin. 
The host asserts the ERROR# pin. 
The microcontroller clears the General Error flag (CSW[8]) after setting it. 

Note that the value written into CMR or MR does not matter, any write to these registers 
causes IR to be set (except, of course, if CMR[15] is set, which resets the chip). For host 
interrupts of the micrcontroller, IIR[2:3] can be used to communicate the type of interrupt to 
the interrupt handler. 

There is no acknowledge pin for the microcontroller interrupts. The host can determine that 
the microcontroller has acknowledged the interrupt request in several ways; see the example 
given at the end of this section. 

When the interrupt is requested, the IR flag is set immediately. IR is cleared when the 
microcontroller software acknowledges the interrupt. If multiple interrupts occur before the 
microcontroller software acknowledges the first one, only one interrupt will occur. 

Interrupt request is serviced when the interrupt enable (IE) flag is set. Service is provided in 
the following steps: 

• Clear IE flag. 
• Read interrupt service routine (ISR) entry from the first location of PGFLASH, at address 

FOOOh. 
• Jump to subroutine ISR. 

Clearing the IR flag and setting the IE flag should be done by software. 

A service request by the microcontroller to the host is indicated by the SRQ# pin. It is 
asserted when the microcontroller writes to the XIR register. SRQ# is deasserted when the 
host asserts the IACK# pin. An outstanding service request is indicated by HS2[2]. 

The following is an example of the interrupt service routine (ISR), containing a command 
interpreter, hardware interrupt handler, and other service request. An example of the host 
service request is also provided. The assumptions are: 

If the IR flag is set by multiple causes or multiple times service is provided, only the one of the 
highest priority will be serviced by the microcontroller. The priority order is: 

• The host asserts the MCINT# pin or writes a 1 to IIR[0]. 
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• The host asserts the ERROR* pin or the host writes a 1 to IIR[1]. 
• The host writes a 1 to IIR[2] or IIR[3]. 
• The host writes to CMR[0:14]. 
• The host writes a 0 to CMR[15] to reset the chip. 

Since there is no acknowledge pin, the following example uses the host service request to gain 
acknowledge. When the interrupt request is sent by the host writing to the CMR register, 
service from the microcontroller is acknowledged through the general-purpose I/O registers! 
The following example does not handle any previous outstanding service requests and the 
actual implementation of the service routines is not provided; it is for illustration purpose only. 
It must not be used as a standard interrupt service routine. The user must implement his/her 
own routines to best satisfy specific application needs. 

isrexam: 

cflgir 

push rO 
push rl 
push r2 

; The physical address is FOOOh, which is the 
; first location in PGFLASH. 

; Clear the IR flag as soon as possible 
; to avoid missing new interrupts. 

; Save registers. 

rdi 38h, rO  ; Read IIR. 

ldi Ofh, rl  ; Get mask for interrupt request other 
; than that by writing CMR. 

and rO, rl 
jnz Qisrl 

ldi 8000h, rl ; Get mask for IR by writing CMR to 
; screening the IR by host clearing IIR. 

cmp rO, rl 
jnz Oisrret  ; No service required for this IR. 

; Now IR by writing CMR. 
jsi cmrintr  ; Call Command Interpreter   

; interpreter for commands written in CMR. 
jmp @isrret 

disrl: ; Provide acknowledge to host for IR 
; other than by writing CMR. If you 
; want to do the same for IR by writing 
; CMR, move this part up and reorganize 
; the code. 

ldi 4, rl Mask for SRQ in HS2. 

Sisrwl: 
rdi 28h, r2  ; Read HS2. 
cmp rl, r2 
jnz @isrw2 
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Put script here to notify SRQ 
outstanding to host or external HW to 
notify that chip is waiting for 
clearing SRQ. 

@isrw2: 
ldi llllh,rl 

wri rl, XIR 

mov one, rl 

and rO, rl 
jz @isr2 

Assume the host service request vector llllh 
is assigned for the microcontroller 
interrupt acknowledge. 
Now the SRQ# pin is be asserted. The 
host should clear IIR with this 
request. 
Get mask for interrupt request from 
MCINT#. 

j si hwirsvc 
jmp @isr4 

IR is from MCINT# pin or host 
a 1 to IIR. 
Call service routine. 

@isr2: 
ldi 2, rl 

and rO, rl 
jz @isr3 

Get mask for interrupt request from 
ERROR# or the microcontroller Error 
flag. 

jsi erxrsvc 
jmp @isr4 

; IR is from ERROR* or the 
; microcontroller error flag. 
; Call service routine. 

@isr3: 
jsi hsirsvc 

IR is by the host writing IIR. 
Call service routine. 

@isr4: 

rdi 38h, rO 
cmp rO, rz 
jnz @isrret 
cflgir 

Clear IR if by the host clearing IIR. 
This can be removed. 

Sisrret: 
pop r2 
pop rl 
pop rO 
sflgie 
rets 

; Return processing. 
; Restore registers. 

; Enable interrupt. 
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MICROCONTROLLER SOFTWARE 

7.1.    OVERVIEW 

This chapter is a functional description of the design and implementation of the Nil 000 microcontroller 
software (also called microcode). Additionally, it describes conventions used in the design and should 
assist experienced assembly language programmers in writing their own functions to add to the command 
set. If these conventions are maintained, new functions can be quickly installed and debugged, without 
destabilizing the existing code. 

7.1.1. Code Design Goals 

The Nil000 microcontroller software is designed to be efficient, modular and compact, without excess 
complexity. It has a deterministic response with no uninterruptable loops. There is a multi-chip protocol 
for increased prototype space expansion. Redundant code, which is normally common with in-line 
functions, is minimized. Protocol rules will be established by which the microcontroller will abide. 
Assuming that the host software also abides by these rules, the protocol will ensure reliable operation 
without hang states or I/O overruns. (See Protocol Rules). 

7.1.2. Key Functions 

The microcontroller software is commonly in an idle state, continually monitoring the status interfaces and 
the state of the chip. A soft command jump table is provided along with learning algorithms and interrupt 
service routines to and from the host controller. An expandable set of commands is supported, utilizing 
the I/O Register File, IRAM, and ORAM to send and receive data. The system configuration can be either 
single or multi-chip, the latter requiring assistance from an external host. Error management is provided 
for both internal and external events. 

7.1.3. Code Structure 

The code has a small real-time process monitor which is active in the idle state. Communication between 
interrupts and monitor code is accomplished via mailboxes and a command queue. Support is provided 
for queuing of multiple commands from the host and for multiple responses and error messages to the 
host. 

7.1.4. Learning Code 

The Nil000 microcontroller software implements compact versions of learning code for RCE/PRCE and 
PNN. 

7.1.5. Principal External Interfaces 

There are three principal external interfaces: a microcontroller interrupt, the I/O register file, and the 
interface to IRAM and ORAM. 

7.1.6. Error Processing 
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The microcontroller software identifies invalid commands and internal errors and notifies the host 
controller. 

7.1.7.     Program Flow 

When the host removes the Nil 000 microcontroller from the reset state by writing 0 to bit 15 of CMR the 
microcontroller begins running the initialization routine starting at location F001H. This routine initializes 
PPRAM, the Used flags in the PADCU, the command jump table, the command queue, the host message 
queue, and some status registers in GRAM. After this the microcode enters a loop in which it monitors the 
command queue, the host message queue, pending I/O operations, and some mailbox locations in GRAM. 

When a command is written into CMR by the host controller, the microcontroller is interrupted   The 
interrupt service routine puts the command on the command queue, along with any associated input 
parameters. The monitor loop takes the command from the queue, references the command jump table 
and calls the appropriate function. 

When execution of a command is complete, the microcode puts a response message, including an error 
code if applicable, on the host message queue. As soon as the previous service request to the host has 
been acknowledged, the monitor loop takes the message from the queue and writes it to the XIR register 
causing a new service request. 
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7.1.8.     Ni1000 Microcontroller Code Function Blocks 

INITIALIZATION 
Initialize Command Queue 
Initialize Host Message Queue 
Initialize PPRAM 
Initialize PADCU Flags 
Load Command Jump Table 
Initialize Status Registers 
Goto EXEC 

EXEC 
Test For Pending Errors 
Test Error MBOX 
Test I/O Pending MBOX 
Test Command MBOX 
Else Idle & Test 

LEARNING 

Initialize PPRAM 
Call LEARN Function 
Return 

LEARN 
BEGIN 

LEARN 
EPOCH 

LEARN 
VECTOR 

FLASH MEMORY 
MANAGEMENT 

Call Function 
Return 

ERASE   PROGRAM   VERIFY 

STANDARD 
COMMANDS 

Call Function 
Clear MBOX 
Return 

CLASSIFY 

MANUAL COMMANDS 

Call Function 
Set I/O Pending 
Clear MBOX 
Return 
RAM 
FUNCTIONS 

I/O 
FUNCTIONS 

STANDARD I/O 
Send/Receive Learning Data 
Send/Receive Multi-Chip Data 
Send/Receive Error Data 
Set I/O Pending 
Set I/O Done 
Clear MBOX 
Return 

INTERRUPT 
Disable Interrupts 
Save Context 
Process Interrupt 
Set MBOX 
Restore Context 
Enable Interrupts 
Return 

ERROR 
Set Error Status 
Set MBOX 
Freeze 
Return 

7-3 11/6/95 



NMOOO User's Guide 

7.2.     MEMORY UTILIZATION 

7.2.1. Constants and Variables 

Two words identifying the microcode type and revision number are locked in PGFLASH at hexadecimal 
addresses F004 and F005, respectively. They can also be found in the microcode object code file in the 
fifth and sixth words of the code segment. For more detail, see Configuration Table Data, below. 

GRAM is a block of 256 memory locations mapped at hexadecimal addresses 1000 through 10FF on the 
Ni1000. It is maintained by the microcontroller, but can also be accessed by the host (see Important 
GRAM Locations, below). Constants and variables used by microcontroller software are loaded from 
instruction memory (PGFLASH) into GRAM. 

7.2.2. Important GRAM Locations 

Several locations in GRAM are of particular interest to the host, because they hold certain parameters that 
describe a network on the NJ1000. Sometimes the host must write to some of these locations using the 
RAMWRITE command, when performing certain high level functions, such as loading network's into the 
chip. It is not necessary for the host to write to these locations for normal learning, or for restorinq 
networks with the RESTORE command. 

1. NEXT_PT is locked at 105Ch. Microcode sees this as the number of the column after the 
last one being used. When the host loads a network (PA and/or PPRAM) into the Nil 000, 
this parameter must be set equal to the number of prototypes, plus the number of disabled 
columns and columns reserved for 10-bit data that are encountered and skipped over in the 
process of loading PA and/or PPRAM. 

2. PT_DIM is locked at 105Dh. This is the number of features in the network. When the host 
loads a network (PA and/or PPRAM) into the Nil 000, this parameter must be set equal to the 
number of features. 

3. LearnParadigm is locked at 105Eh. This holds the paradigm used in training the network on the 
NilOOO. When the host loads a network, it should set this to a value that designates that network's 
paradigm. The following values are currently assigned: 0 for no network, 1 for RCE/PRCE and 2 for 
PNN. 

4. SectorNumber is locked at 1062h. Bits 5-3 represent the starting PA column number 
divided by 128 and bits 2-0 represent the starting PA row number divided by 32. The host 
writes to this location when loading a network, or switching to any specific network in the 
Ni1000 without using the RESTORE command. 

5. SmoothingBias is locked at 1063h. This must be loaded with the smoothing factor 
exponent offset. This is important, because it is part of the smoothing factor, so chanqinq 
this value changes the network itself. 

6. Param_A through Param_F are locked at 1064h -1069h. These are currently not defined 
but are reserved for any additional parameters that may be needed if learning and/or 
classification paradigms other than RCE, PRCE, and PNN are implemented on the Ni1000 in 
the future. 

7. DIAG_MASK is locked at 106Ah. It should normally be left at its default value of 0   Only 
one bit is currently defined. Bit 0, when set, enables the host to write anything it wants into 
all bits of a PPRAM entry, including the PA Usage field and the Used and Disable bits even 
if the data is inconsistent or does not make sense. This is provided for debugging capability 
and should never be set for normal usage. Other bits may be defined in future revisions of ' 
the NMOOO microcontroller software. 

7.2.3.     Command Jump Table 

11/6/95 7-4 



NilOOO User's Guide 

During microcode initialization, the command jump table is loaded by microcode into the first 64 locations 
of GRAM, starting at location 1000H. Each entry in the command jump table contains the PGFLASH 
address of a microcode routine in the 12 least significant bits. The first 32 entries are reserved for entry 
points to routines that process commands from the host, and the last 32 entries are used for other 
functions. For each of the first 32 entries, the four most significant bits indicate how many of the OP 
registers (OPO - OP5) are used for input parameters to the command. 

7.2.4. Command Queue 

The command queue occupies the next 16 locations of GRAM, starting at location 1040H. Commands 
from the host are taken from CMR by the interrupt routine and added to the command queue, along with 
any associated parameters from the OP registers. Frames on the command queue are of varying length, 
since the number of parameters varies from one command to the next. The command queue is circular. 

7.2.5. Host Message Queue 

The host message queue occupies the next 8 locations of GRAM, starting at location 1050H. Command 
completion messages or error messages are always added to this queue. When the monitor loop detects 
that this queue is not empty, it checks to see if the host has acknowledged the previous service request. If 
so, the next message is removed from the queue and written to XIR, causing a service request. The host 
message queue is circular. If it becomes full and the microcode has another message to add to it, the 
microcode disables interrupts and waits until the host acknowledges a service request, freeing up space on 
the queue for the new message. 

7.2.6. Instruction Memory 

Code space available is 4K 16-bit words and is mapped at hexadecimal F000. 

7.2.7. Interrupt Vector 

The chip internal interrupt vector is the PGFLASH address of the microcode interrupt service routine, 
relative to hexadecimal F000.  It is loaded into PGFLASH location OOOh. 

7.2.8. initialization Code Entry Point 

The microcode begins execution at PGFLASH address 001 h when the host removes it from the reset state 
by writing 0 to bit 15 of CMR. 

7.2.9. Microcontroller Stack 

The microcontroller software uses the microcontroller stack for storage of data and return addresses. This 
stack has 64 16-bit locations. The stack pointer is incremented before data is pushed, so location 0 is not 
usable. 

7.2.10. Configuration Table Data 

The following configuration information can be accessed via the READCONFIG command. 

Microcode ID (16 bits): This number identifies the type of microcode residing in PGFLASH. ID 
number 0000 has been assigned to the standard microcode, which is defined in this document. 
(There are some differences between the Ni1000 emulator and the actual hardware that make it 
necessary to have two separate versions of microcode. The equivalent version of microcode that 
is intended only for emulation has an ID of 0001.) Other ID numbers may be defined later if the 
32 available opcodes are redefined for other command sets. 

Microcode Revision Number (16 bits): Bits 15-12 = 0000; bits 11-8 = major revision; bits 7-4 = 
minor revision; and bits 3-0 = fix revision. For revision 2.0, the revision number is hexadecimal 
0200. 
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Learning Paradigm: This identifies the paradigm associated with the neural network that is 
currently active on the chip. It is set during learning via the LEARNBEGIN command. As an 
alternative, the host can set the learning paradigm by writing to GRAM location 105E hex. This 
may be done in cases where the network is loaded from external files, instead of being learned 
on-chip. The following values are currently assigned: 0 for no network, 1 for RCE/PRCE and 2 
for PNN. 

Number of Classes: This is actually the highest class number + 1. However, results are 
reported for all classes up to this number; so it is the number of classes active on the chip. 

Number of Prototypes: The number of prototypes in the active network. Unused and disabled 
prototypes are not included. 

Number of Features: The number of features currently being used in the active network. 

Maximum Radius: The maximum radius value (a parameter associated with RCE/PRCE 
learning) that was used in training the currently active network. 

Minimum Radius: The minimum radius value (a parameter associated with RCE/PRCE 
learning) that was used in training the currently active network. 

Sector Number: The location of the currently active network. This number ranges from 0 to 64. 
Bits 0-2 specify the starting row number in PA divided by 32, and bits 3-5 specify the starting 
column number in PA and PPRAM divided by 128. 

Smoothing factor exponent offset: The current setting for the offset that will be added to the 
normal smoothing factor exponent bias of-13 during probabilistic classification. 

Param_A through Param_F: These are currently not defined, but are reserved for any additional 
parameters that may be needed if learning and/or classification paradigms other than RCE 
PRCE, and PNN are implemented on the NH000 in the future. 

7.3. PROGRAMMING CONVENTIONS 

7.3.1.     Register Use 

Existing microcode subroutines do not always preserve the values of DS1, DS2, and R0 - R3. This means 
that for many subroutines, the calling routine is responsible for saving and restoring any registers it is 
using. This can be done by pushing them onto the microcontroller stack before calling the subroutine and 
popping them after returning. 

7.4. ERROR SUPPORT 

Asynchronous errors have priority over synchronous errors. Currently the only asynchronous error is 
caused by the host controller or by another chip, via the ERROR* pin. The ERROR* pin causes the 
microcontroller to "freeze", until the error has been reset by the host controller. All other errors are 
communicated to the host controller via the XIR register in the order in which they occur. 

7.4.1.     Error Codes 

When an error occurs, the microcontroller informs the host by writing a nonzero error code to 
XIR[14:8]. This allows for up to 127 different error codes. The following error codes (shown in 
hexadecimal) are currently assigned: 

01:  UNIMPLEMENTED 

The command opcode issued by the host to the microcontroller through CMR is not implemented. 
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02: COMMAND_QFULL 
The command queue is full and the microcontroller cannot accept the last command sent by the host. 

03: STACK_ERROR 
This error indicates that the microcontroller stack has overflowed or underflowed. This can only be 
caused by a microcode bug. There is no guarantee that this error message will ever actually be 
issued if a stack error occurs. A more reliable way for the host to detect a stack error is to check HS1 
bit 7, which reflects the state of the microcontroller's Stack Error flag. 

04: CHIP_FULL 
The prototype array is full and the LEARNBEGIN command was unable to commit the current 
prototype. 

05: BAD_RCEB_VALUE 
The RCEB bit in the CRA register is 0, and it must be 1 for the current command. This error is for 
commands that load data into ORAM under microcode control (e.g., READCONFIG or 
COLUMNREAD). According to the protocol for this microcode, only the host should write to CRA. 

06: COUNT_TOO_BIG 
The count parameter is out of bounds for the current command. 

07: RANGE_TOO_BIG 
The combination of the count parameter with the starting location parameter causes an out of range 
condition for the current command. 

08: PPRAM_DIS_ERROR 
The host attempted, via RAMWRITE or PPRAMWRITE, to change the Disable bit for a column in 
PPRAM. 

09: PPRAM 10BIT ERROR 
The host attempted,~via RAMWRITE or PPRAMWRITE, to set the Used bit in PPRAM for a column 
that is reserved for 10-bit data and thus cannot be used for prototypes. 

OA: PARAM_ERROR 
A microcontroller routine had a parameter passed to it that is out of range. A common cause for this 
error is attempting to classify without initializing the network. CLASSMODE requires that two 
parameters in GRAM be initialized. The number of features must be at hexadecimal address 105D. 
The number of the column after the last one used by the network must be at hexadecimal address 
105C. (Normally this is the same as the number of prototypes, unless there are disabled or unused 
columns in the range of columns used by the network.) These locations are loaded during normal 
learning. They can also be loaded via RAMWRITE. 

OB:  DIS_COLUMN_ERROR 
The host attempted to program or erase a disabled column in the prototype array. 

OC:  ERASE_ERROR 
An attempt to erase a column in the prototype array has failed. The error occurred on the erase 
operation itself, after both columns in the block were successfully programmed to all ones. When this 
error occurs, the microcode disables both columns in the block that failed to erase. 

OD:  BAD_COLUMN_ERROR 
An attempt to program data into a column in the prototype array has failed. The error occurred on the 
programming operation itself, after the erase operation completed successfully (if it was necessary). 
When this error occurs, the microcode disables both columns in the block that could not be 
programmed. 

OE:  PROTOTYPEJ-OST 
A prototype has been lost from the network: an attempt by LEARNBEGIN to commit a new prototype 
failed because the column went bad. The other column in the same block did not contain a prototype. 
When this error occurs, the microcode disables both columns in the block that failed. 
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OF: BOTHJ.OST 
Two prototypes have been lost from the network: an attempt by LEARNBEGIN to commit a new 
prototype failed because the column went bad. The other column in the same block contained a 
prototype, which was also lost. When this error occurs, the microcode disables both columns in the 
block that caused the error. 

10: PPRAM_ERROR 
An attempt was made, via the PPRAMWRITE command, to set both the Used and Disable bits in a 
PPRAM entry. The microcontroller does not allow this. 

11: RESTRICTED_ERROR 
An attempt was made to alter a location that is protected by the microcode. Currently the only 
locations that are protected by microcode are the command queue, the host message queue, and their 
pointers. These locations are in GRAM, mapped at hexadecimal addresses 1040 through 105B. 

12: UNDEFINEDJNT 
An undefined interrupt was taken. This means a value greater than 31 was written to CMR or a value 
of 8 or C was written to IIR. 

13: NOT_ERASED 
An attempt was made to write data in 10-bit mode into the prototype array with the COLUMNWRITE 
command, but the area of PA being written to is not erased. In 10-bit mode, the host must erase the 
block and restore any other data in the block. 

14: PGM1_ERROR 
While preparing to erase a block in the prototype array, the microcontroller was not able to program 
the first column in the block to all 1's. In this context, the first column is the target column for 
COLUMNERASE or COLUMNWRITE (whether in the high or low half of PA), or the lower numbered 
column for BLOCKERASE. 

15: PGM2_ERROR 
While preparing to erase a block in the prototype array, the microcontroller was not able to program 
the second column in the block to all 1's.  In this context, the second column is the other column that 
shares a block with the target column for COLUMNERASE or COLUMNWRITE (whether in the high or 
low half of PA), or the higher numbered column for BLOCKERASE. 

16: BAD_PARADIGM 
The LEARNVECTOR command returns this error if the learning paradigm at hexadecimal address 
105E in GRAM is either 0 or some undefined value. The learning paradigm is normally set by 
LEARNBEGIN. Defined values are: 0 for no network, 1 for RCE/PRCE, and 2 for PNN. 

17: NO_PACT 
The RESTORE command returns this error if the PA Configuration Table does not exist. 

18: NO_SUCH_NET 
The RESTORE command returns this error if the specified network is not listed in the PA 
Configuration Table. 

19: NOT_BACKED_UP 
The RESTORE command returns this error if the PA Configuration Table indicates that the specified 
network exists, but is not backed up in the prototype array. 

1A: PACT_CORRUPTED 
The RESTORE command returns this error if an inconsistency is found in the PA Configuration Table. 

1B: BAD_BIT_MODE 
Using COLUMNWRITE, the host attempted to program in 5-bit mode a column that is reserved for 10- 
bit mode data, or to program in 10-bit mode a column in a block in which either column contains (5-bit 
mode) prototype data. v 
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7.5. DEBUGGING SUPPORT 

Currently the only debugging mechanism is the interrupt caused by the MCINT# pin. This interrupt takes a 
snapshot of microcode activity by making some status information visible in some of the I/O registers. 
Bits 0-4 of HS1 get the value they had when the interrupt occurred. OP0 - OP3 get the contents of R0 - R3 
at the time the interrupt occurred. OP4 gets the value of the stack pointer before the interrupt, and OP5 
gets the return address that was pushed on the microcontroller stack when the interrupt occurred.   To 
make the microcontroller go back to what it was doing, the host should cause another interrupt, preferably 
by writing 0 to IIR. 

7.6. HOST TO CHIP COMMUNICATION 

7.6.1. Microcontroller Initialization 

After resetting the NMOOO, the host writes 0 to bit 15 of CMR. This starts the microcode running. The 
microcode keeps interrupts disabled until it has finished running the initialization routine. As soon as 
interrupts are enabled, as indicated by bit 6 of HS1, the microcontroller is ready to accept commands from 
the host. Note that the microcontroller does not raise a service request when initialization is complete. 

7.6.2. Microcontroller Interrupts 

There are four ways for the host to interrupt the microcontroller: by asserting the ERROR* pin, by 
asserting the MCINT* pin, by writing directly to the IIR register, and by writing to the CMR register. In any 
of these cases, the microcontroller is interrupted immediately if interrupts are enabled; otherwise, the 
interrupt is deferred until the microcontroller enables interrupts. The interrupt forces the microcontroller to 
go to the interrupt service routine, the PGFLASH address of which is stored in the first location of 
PGFLASH. The microcontroller saves some state and then examines the contents of IIR to determine the 
cause of the interrupt. 

When the ERROR# pin is asserted, it causes bit 1 of IIR to be set to 1. The microcode interrupt handler 
goes into a tight loop, watching the ERROR* pin. As soon as the ERROR* pin is no longer asserted, the 
microcontroller goes back to what it was doing when the interrupt occurred. 

When the MONT* pin is asserted, it causes bit 0 of IIR to be set to 1. The microcode interrupt handler 
restores bits 0-4 of the flags (in CSW and HS1) to the value they had when the interrupt occurred. OP0 - 
OP3 get the contents of R0 - R3 at the time the interrupt occurred. OP4 gets the value of the stack pointer 
before the interrupt, and OP5 gets the return address that was pushed on the microcontroller stack when 
the interrupt occurred.   The microcontroller waits in a tight loop until another interrupt condition is 
asserted, then it restores OP0 - OP5 and allows the next interrupt to occur. The host should use the "null 
interrupt" (i.e., write 0 to IIR) to break the microcontroller out of this loop; then the microcontroller will go 
back to what it was doing when the interrupt occurred. 

The IIR register identifies the cause of an interrupt to the microcontroller. The host can cause an interrupt 
by writing directly to IIR. Only bit 15 and bits 3-0 are implemented. Bits 15, 1, and 0 have special 
hardware significance. The host normally should not write anything but 0's to these three bits (although it 
is possible to fool the microcontroller into taking an invalid CMR, MCINT* or ERROR* interrupt). That 
leaves bits 3-2 available to encode other special interrupts defined by the host and microcontroller 
software. Writing 0 to IIR causes the null interrupt, which is normally used to exit from the MCINT* 
interrupt. Writing 4 to IIR tells the microcontroller during multiple-chip learning that the global minimum 
distance is ready in OP4; the microcode sets a status bit in SSR when this interrupt occurs. The other two 
values, 8 and C, currently cause undefined interrupts. 

When the host writes to CMR, it causes bit 15 of IIR to be set to 1. This interrupt is the normal method for 
issuing commands to the microcontroller. The value written to CMR is interpreted as a command opcode. 
The only hardware constraint on the command opcode is that bit 15 must be 0. (Writing 1 to bit 15 of 
CMR resets the chip.) In the current microcontroller software design, legal opcodes are 5 bits wide, 
ranging from 0 to 31. 
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To issue a command to the Nil000, the host first writes the input parameters to the specified I/O registers, 
then writes the command opcode to the CMR register. The write to CMR causes bit 15 of the MR register 
to be set and causes an interrupt to the Nil000, setting the interrupt request flag (IR), which is visible to 
the host. If the command has an input vector associated with it, the host waits until the microcontroller 
code clears IR, signifying that it has taken the interrupt. Then it waits until the microcontroller code clears 
bit 0 of SSR, signifying that it is ready for the vector. Then after making sure IRAM is empty, it writes the 
input vector into IRAM. (The host can also interrupt the microcontroller by writing to IIR, or by pullinq the 
ERROR* or MCINT# pin.) 

7.6.3.     I/O Register Usage 

In this protocol, OP0 - OP3 are normally reserved for input parameters (PPRAMREAD being the only 
exception). OP5 is used for output if needed, as in the case of RAMREAD. OP4 is reserved for 
communicating the local and global minimum distances between the host and the Nil 000 during learning 
on a multi-chip network. Note that the host must be able to handle a request for global minimum distance 
when there is a learning command in progress on the Nil000. The local and global minimum distances 
are passed through OP4, and bits in the SSR register will be used to indicate when the value in OP4 is a 
valid local or global minimum distance. 

SSR should not be written to by the host. The following bits in SSR are currently defined. 

Bit 

10 
11 
12 
13 
14 
15 

Meaning 
Serves a flow control. When set, indicates that the host should wait for the microcode to complete the 
current command. 
Set to 1 when bit 2 is valid. 
Set to 1 during learning if the network has changed during the current epoch. 
Set by the LEARNVECTOR command when it commits a prototype 
Set to 1 when the command queue is not empty 
Set to 1 when the host message queue is not empty. 
Unused 
Set to 1 during learning when the microcontroller has loaded the local minimum distance into OP4. 
Set to 1 during the MCINT# interrupt 
Set to 1 by the LEARNVECTOR command when a count field in PPRAM overflows 
CAttA   4   U..«L. ^rtl   lllllLini-An •        . ..        «~ .   .   . -_ Set to 1 by the COLUMNREAD command when the PA column being read is disabled 
CA*4-A  A   u..*u-^>/-\l  liftahir-tr-Ar^ .       ■  -* -  :—* —■  Set to 1 by the COLUMNREAD command when the PA column being read contains 10-bit data 
Set to 1 by LEARNVECTOR if an existing prototype was shrunk to accommodate a new prototype. 
I Inncorl '  "-  Unused 
Unused. 
Set to 1 when the prototype array becomes full. 

7.6.4.     Host Service Requests 

Upon completion of a command, the Nil000 writes any output parameters to I/O registers or ORAM, then 
writes the command opcode to the XIR register. The write to XIR causes a service request to the host via 
the SRQ# pin. The host takes the contents of XIR and all output data, then acknowledges the service 
request via the IACK# pin. 

A service request (SRQ) can be caused by ORAM becoming full (if the host enabled that type of SRQ via 
the OSR bit in CRA), or by the microcontroller writing to the XIR register. The host can identify the cause 
of the SRQ by looking at XIR. The value FFFFH is reserved for when ORAM becomes full. Other values 
are assigned by host and microcontroller software. The following format for XIR is implemented in the 
microcontroller code. 
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15 14 8 7         6 5 0 

0 Error Code Reserved Command Opcode 

15:   Making this 0 ensures that no microcontroller-defined value will ever be FFFFH. 
14-8:   This is a 7-bit error code. Zero means no error. For other defined values, see Error Codes. 
7-6:   These 2 bits are reserved and must be 00. 
5-0:    If bit 5 is 0, then bits 4-0 contain the opcode of the command that was just completed 

(or the command that was executing when the error signified by bits 14-8 occurred). If 
bit 5 is 1, some other command or message is being sent to the host. For example, XIR 
will contain 20h when the chip requests the global minimum distance from the host. 

7.6.5.     Protocol Rules 

The protocol rules are not hardware limitations. The first rule, for example, does not mean that the 
microcontroller is not capable of writing to CRA.  It actually is capable of writing to CRA; otherwise, the 
rule would not be necessary. The purpose of these rules is to define the protocol that should be followed 
by any host driver code that communicates with this version of Nil 000 microcontroller software, so that 
hangs, overruns, and loss of data can be prevented. This protocol should also be followed by any future 
microcode routines that are integrated with this microcontroller software. 

1.    The microcode will not write to the CRA register. The functions controlled by CRA should be 
under control of the host processor. If the microcontroller was allowed to write to CRA, it could 
conflict with writes to CRA by the host. 

2. The host will not write to the CRB register. The functions controlled by CRB should be under direct 
control of the microcode. For classification, the host would want to set or clear the OFPE bit. It must 
do this indirectly by passing a parameter with the CLASSMODE command. 

3. The host will not write to the SSR register. The microcontroller modifies the contents of SSR at 
various times.    If the host was allowed to write to SSR, it could conflict with writes to SSR by the 
microcontroller. 

4. The host will not acknowledge a service request until it has taken the contents of XIR and any 
other output parameters. This rule in conjunction with rule 5 ensures that the chip will not overrun 
the host, causing service requests and output parameters to be lost. 

5. The microcontroller will check to make sure that SRQ# is not active before it writes any output 
parameters or writes to XIR.. 

6. The microcontroller will not clear the interrupt request flag (i.e., issue CFLGIR) until it has set 
the flow control bit in SSR. It will not clear the flow control bit until it has taken the incoming 
command from CMR and any related parameters from OPO - OP3. This rule in conjunction with 
rule 7 ensures that the host will not overrun the microcontroller, causing commands or input 
parameters to be lost. 

7. Before writing any input parameters to OPO - OP3 or any command to CMR, the host will first 
check HS1 to make sure the interrupt request flag (IR) is not still asserted due to a prior 
interrupt. After IR is found to be inactive, the host will check SSR to make sure the flow 
control bit is clear, signifying that the microcontroller code has taken any previous commands 
and parameters from the I/O registers. 

8. For any command that has an input vector associated with it, the microcontroller will not clear 
the interrupt request flag (i.e., issue CFLGIR) until it has set the flow control bit in SSR. It will 
not clear the flow control bit until it is ready to receive and process the vector. Commands 
affected include INPUTLOAD, COLUMNWRITE, and LEARNVECTOR. This rule in conjunction with 
rule 9 ensures that the host will not write the input vector too soon. 

9. For any command that has an input vector associated with it, before loading the vector into 
IRAM, the host will check HS1 to make sure that the interrupt request flag (IR) is not still 
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asserted, then check SSR to make sure the flow control bit is clear, signifying that the 
microcontroller code is ready to receive the vector. Commands affected include INPUTLOAD 
COLUMNWRITE, and LEARNVECTOR.  This rule does not apply to vectors sent to IRAM for 
classification after the CLASSMODE command has completed. A derivative of rules 7, 8, and 9 is that 
no command can be queued behind a command with an associated input vector until after the vector 
has been written to IRAM. 

For any command that uses the DIM register, the host will not change the contents of the DIM 
register until the command is finished. The contents of DIM are used in determining when IRAM 
and ORAM are full. This rule implies that if commands are queued, no more than one command that 
uses the DIM register can be in the command queue at any given time, unless the same value is 
needed in DIM. 

For any command, the host will clear any input registers (OP0 - OP3) not used by that 
command to 0. This rule is to ensure upward compatibility of existing driver code in the likely event 
of future expansion of parameter lists for any existing commands. 

12. When the PPRAMREAD command is executing on the chip, the host will not write any input 
parameters to OP0 - OP2 or write any new commands to CMR until the PPRAMREAD command 
is finished. OP0 - OP3 are normally reserved for input parameters. No commands can be queued 
behind PPRAMREAD, because it uses OP0 - OP2 for output. This is actually an advantage because 
the host can do a PPRAMREAD-modify-PPRAMWRITE without having to shuffle the data around. 

13. At any given time, the host should not queue more than one command using the same I/O 
registers for output. That is, the host should not put two RAMREAD commands, or two 
PPRAMREAD commands, on the queue. Doing so will not cause an error, but output data is not 
queued. Therefore, the data from all but the last RAMREAD or PPRAMREAD will be lost. 

11. 

7.6.6.     Command Opcodes 

The host issues a command to the microcontroller by writing a command opcode to the CMR register 
the current microcontroller software design, legal opcodes are 5 bits wide, ranging from 0 to 31 The 
following command opcodes are currently defined: 

In 

00:  READCONFIG 
This command causes the microcode to output chip configuration information through ORAM   Before 
issuing READCONFIG, the host must make sure the RCEB bit in the CRA register is set to 1 
(Otherwise the BAD_RCEB_VALUE error code will be returned.) The microcode loads DIM bits 13-8 
with the number of 16-bit ORAM words - 1 and leaves ORAM in auto mode so the host can access the 
data. The format of the configuration data in ORAM is as follows. (For more detail seethe 
Configuration Table Data section.) 

ORAM word 0: Microcode ID 
ORAM word 1: Microcode Revision Number 
ORAM word 2: Undefined 
ORAM word 3: Undefined 
ORAM word 4: Paradigm used to learn the currently active network 
ORAM word 5: Number of classes in the active network 
ORAM word 6: Number of prototypes in the active network 
ORAM word 7: Number of features in the active network 
ORAM word 8: Maximum Radius used in learning the active network 
ORAM word 9: Minimum Radius used in learning the active network 
ORAM word 10: Sector Number for the active network 
ORAM word 11: Smoothing factor exponent offset 
ORAM words 12-17:      Six more words of configuration information that are 

reserved in GRAM but not currently defined 
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01: CLASSMODE 
This command puts the Nil000 into classification mode. Before issuing CLASSMODE, the host sets 
the bits in CRA to the desired values. For instance, CRA bit 1 selects either probabilistic or RCE 
mode. (PRCE and PNN both use probabilistic classification.) The host writes the index of the last 
feature (i.e., the size of the input vector minus 1) to DIM bits 7-0. For probabilistic classification, OP0 
is set to zero if results are desired in internal 16-bit mode, or nonzero for IEEE-32 mode. As part of 
the functionality of this command, microcode scans the network and loads the highest class number 
(i.e., the class count minus 1) into DIM bits 13-8. 

After the CLASSMODE command has completed, the host can write input vectors into IRAM and read 
classification results from ORAM. The Nil000 will be taken out of classification mode and put into 
microcontroller mode when the host issues any of the other commands. 

02: SETCLOCK 
The microcontroller must know what the clock period is so that it can erase and program PA flash 
memory. The host must write the actual clock period in nanoseconds into OP0 and issue this 
command, right after initialization. Any microcontroller code that erases or programs PA flash 
memory will not function properly until after SETCLOCK has been issued. 

03: INPUTLOAD 
The host uses this command to just load a vector into IRAM and let it remain there. DIM bits 7-0 
contain the number of bytes minus 1. 

04: COLUMNREAD 
This command is used to read part of a column from the prototype array (between 1 and 128 rows) 
through ORAM. Before issuing COLUMNREAD, the host must make sure that the RCEB bit in the 
CRA register is set to 1. (Otherwise the COLUMNREAD command will return the BAD_RCEB_VALUE 
error code.) OP0 has the number of the column to read, and OP1 has the first row in that column to 
read. Each row in the PA has 10 bits of data. PA rows used for classification are always stored in 5- 
bit mode (as 5 bipolar bit pairs), so the data can be represented as a 5-bit value. Data can also be 
examined in 10-bit mode, but only half as many rows can be read with one COLUMNREAD command. 
OP2 has the mode in which the data is to be output: 0 for 5-bit mode, or 1 for 10-bit mode. DIM bits 
13-8 must contain the index of the last 16-bit word to be read from ORAM.  In 10-bit mode, this is the 
number of rows to be read minus 1; in 5-bit mode, it is the number of rows to be read divided by 2, 
minus 1. In 10-bit mode, each row of ORAM will have one PA row in the low order 10 bits. In 5-bit 
mode, each byte of output in ORAM will contain one PA row in the high order 5 bits. Note that 
depending on the mode, either two or four COLUMNREAD commands are required for the host to 
read an entire column (256 rows) from the prototype array. 

COLUMNREAD also provides additional information that may be of interest to the host program. If 
the column is disabled, COLUMNREAD sets bit 10 of SSR to 1. If the column is reserved for 10-bit 
data, COLUMNREAD sets bit 11 of SSR to 1. (Seethe PA Usage Field section.) A COLUMNREAD 
in 5-bit mode verifies that the data in each row being read from the PA consists of 5 bipolar bit pairs 
(01 or 10).  If that is not the case for any row being read, the least significant bit is set to 1 in the 
output byte containing the data for that row. 

05: COLUMNWRITE 
This command is used to write a vector via IRAM into a column, or part of a column, in the prototype 
array. If only part of a column is written, the rest of the column is unchanged. DIM bits 7-0 must 
contain the IRAM index of the last byte (i.e., the size of the input vector minus 1). OP0 has the 
number of the column to be written, and OP1 has the index in the PA column of the first row to be 
written. Each row in the PA has 10 bits of data. PA rows used for classification are always stored in 
5-bit mode (as 5 bipolar bit pairs), so the data can be input as a 5-bit value. Data can also be input in 
10-bit mode. OP2 has the mode in which the data is to be input: 0 for 5-bit mode, or 1 for 10-bit 
mode. In 5-bit mode, each byte of the input vector written to IRAM will contain one row in the high 
order 5 bits. In 10-bit mode, two vectors must be written to IRAM: the first vector has the high order 5 
bits for each row in the high order 5 bits, and the second vector has the low order 5 bits for each row 
in the high order 5 bits. If 10-bit mode is used, the PA rows being written to must already have been 
erased; otherwise the COLUMNWRITE command will return the NOT_ERASED error code. This 
command is flexible enough to write a single row, or any number of rows in any area of the column, or 
the whole column. 
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06: COLUMNERASE 
This command erases one column in the prototype array. If the other column in the same block is 
used, its contents will not be changed (i.e., the other column in the block will be saved and restored). 
OPO has the number of the column to be erased. 

07: BLOCKERASE 
This command erases one block (two columns) in the prototype array. The block number in OPO is 
the number of the first column. For instance, if OPO contains 0, columns 0 and 512 will be erased. 

08: PPRAMREAD 
This command reads all PPRAM data for the column specified in OPO. The microcontroller writes the 
data from PPRAM1, PPRAM2, and PPRAM3 into OPO, OP1, and OP2, respectively. 

09: PPRAMWRITE 
This command loads the PPRAM data for the column specified in OP3. The data for PPRAM1, 
PPRAM2, and PPRAM3 must be provided in OPO, OP1, and OP2, respectively. 

OA: RAMREAD 
This command reads the contents of a mapped memory location from the Nil000. The address must 
be provided in OPO. The microcontroller writes the data into OP5. This command should not be used 
to access internal Ni1000 control registers, the prototype array, or PGFLASH. 

OB: RAMWRITE 
This command writes the data from OP1 into the mapped memory location whose address is in OPO. 
Extreme caution should be exercised if this command is used. Some locations are protected by 
microcode, and microcode will respond to any attempt by the host to write to these via the 
RAMWRITE command with the RESTRICTED_ERROR error code. Currently the only protected 
locations are the command queue, the host message queue, and their pointers. These locations are 
in GRAM, mapped at hexadecimal addresses 1040 through 105B. 

The host should not attempt to use this command to write to internal Nil000 control registers, the 
prototype array, or PGFLASH. The internal Nil000 control registers should be written to only by 
microcode routines that control the transition of the chip among the various modes of operation. 
Attempts to switch modes by using RAMWRITE to load the internal registers individually will not be 
successful. The primary reason for this is that microcode puts the entire chip into microcontroller 
mode each time it enters the RAMWRITE command (as is the case for all commands). To put the 
chip into classify mode, the host must issue the CLASSMODE command. The data that gets loaded 
into some of the internal control registers by CLASSMODE is derived from parameters in GRAM that 
the host can modify via RAMWRITE. (See Important GRAM Locations). 

OC: LEARNBEGIN 
This command begins a learning session. It initializes the prototype array by marking all columns 
unused in PPRAM, then loads parameters that are to be used during learning. The host writes the 
size of the input vectors (#bytes -1) to DIM bits 7-0. OPO specifies the learning paradigm that is to be 
used. (Values currently defined are 1 for RCE/PRCE, and 2 for PNN.) OP1 must contain the 
smoothing factor, which is used for probabilistic classification. OP2 and OP3 contain the minimum 
and maximum values, respectively, for the threshold radius (the size of the influence field of a 
prototype, used for RCE classification). LEARNBEGIN is a general purpose command that is 
designed to be the first step for learning in any paradigm. For RCE/PRCE, a typical learning session 
looks like this: 

(LEARNBEGIN, LEARNVECTOR, LEARNVECTOR LEARNVECTOR)- 
(LEARNEPOCH, LEARNVECTOR, LEARNVECTOR LEARNVECTOR); 

(LEARNEPOCH, LEARNVECTOR, LEARNVECTOR LEARNVECTOR, LEARNEND) 
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The same set of learning vectors is repeated for each epoch. After each epoch, the host looks at a 
flag in the SSR register.  If that flag indicates that the network did not change during that epoch, 
learning is completed. For PNN, each learning vector is committed as is, and only one pass is taken 
through the learning vectors, so the SSR flag that indicates whether the network changed is ignored by 
the host. PNN learning looks like this: 

(LEARNBEGIN, LEARNVECTOR, LEARNVECTOR LEARNVECTOR, LEARNEND) 
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OD: LEARNVECTOR 
This command learns from one learning vector according to the paradigm previously specified by 
LEARNBEGIN. The host should make sure that the OSR bit in the CRA register is set to 1 before 
issuing this command. The class number for the input vector is provided in OPO. The 
LEARNVECTOR command uses bit 3 of the SSR register to inform the host when it commits a 
prototype.  If no prototype is committed, SSR bit 3 is reset to 0 when LEARNVECTOR completes. For 
multichip learning, bit 15 of OPO, when set, tells the learning algorithm not to commit the prototype. 
When bit 14 is set, the learning algorithm clears a region in the feature space around the input vector. 

During PRCE learning with very a large learning vector set, it is conceivable that a count field in 
PPRAM may increment past the maximum value (65535) and wrap to 0.  If such a condition were 
ignored, it would result in great loss of accuracy in classification. The way the microcontroller 
software handles this condition allows simple host programs to get reasonably accurate results in all 
but the rarest of cases (i.e., when a count is incremented far past the limit or when many counts 
overflow).  It also makes it possible for more sophisticated host software to compensate for the 
overflow.    The LEARNVECTOR command sets bit 9 in SSR when a count is incremented from 
FFFEh to FFFFh (i.e. 65534 to 65535). A count is not allowed to roll over, so once at FFFFh it 
remains there, without causing additional overflows.  If the host software chooses to correct the 
counts, it must monitor SSR bit 9 after each LEARNVECTOR command. Every time the bit is set the 
host must use PPRAMREAD to locate the offending prototype(s) by finding FFFFh in the count field 
The host then uses PPRAMWRITE to set the count to 0 and proceeds with learning. Once learning 
has completed, the counts of the vectors that overflowed indicate the number of additional increments 
past FFFF. The host may then add duplicate prototypes for the prototypes that overflowed with their 
counts set to FFFFh. 

0E: LEARNEPOCH 
This command starts a new learning epoch by clearing all count fields in PPRAM. 

OF: LEARNEND 
This command ends a learning session, performing whatever post-processing is implemented 
for learning in the paradigm previously specified in LEARNBEGIN. LEARNEND does not 
currently do anything, but it should be included at the end of a learning session because 
functionality may be added in future revisions. 

10: RESTORE 
This command restores the contents of PPRAM for all prototypes used by a network, along 
with some other information about the network, from an area in the prototype array. The 
sector number of the network to be restored is in OPO. 

• 
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OPCODE COMMAND 
00 READCONFIG 

01 CLASSMODE 

02 SETCLOCK 

03 INPUTLOAD 

04 COLUMNREAD 

05 COLUMNWRITE 

06 COLUMNERASE 

07 BLOCKERASE 

08 PPRAMREAD 

09 PPRAMWRITE 

0A RAMREAD 

INPUTS 
none 

DIM[7:0]: dimension 
OP0: IEEE-32 conversion flag 

OP0: clock period 

DIM[7:0]:IRAM dimension 
I RAM: input vector 

DIM[13:8]: ORAM dimension 
OPO: column # 
OP1: first row # 
OP2: mode - 0 for 5-bit; 1 for 10-bit 

DIM[7:0]: IRAM dimension 
OPO: column # 
OP1: first row # 
OP2: mode - 0 for 5-bit; 1 for 10-bit 
IRAM: input vector(s) 

OPO: column # 

OPO: block # 

OPO: prototype # 

OPO: PPRAM1 data 
OP1:PPRAM2data 
OP2: PPRAM3 data 
OP3: prototype # 

OPO: address 

OUTPUTS 
XIR: 00000 
DIM[13:8]:(#ofbytes/2)-1 
ORAM: configuration data 

XIR: 00001 
DIM[13:8]: class count-1 

XIR: 00010 

XIR: 00011 

XIR: 00100 
ORAM: PA column data 

XIR: 00101 

XIR: 00110 

XIR: 00111 

XIR: 01000 
OPO: PPRAM1 data 
OP1:PPRAM2data 
OP2: PPRAM3 data 

XIR: 01001 

XIR: 01010 
OP5: data 

OB RAMWRITE OPO: address 
OP1: data 

XIR: 01011 
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OPCODE     COMMAND 
OC LEARNBEGIN 

INPUTS 
DIM[7:0]: dimension 
OPO: learning paradigm 
OP1: smoothing factor 
OP2: Minimum Radius 
OP3: Maximum Radius 

OD LEARNVECTOR OPO: class # 
IRAM: input vector 

OE LEARNEPOCH none 

OF LEARNEND none 

10 RESTORE OPO: sector number 

OUTPUTS 
XIR: 01100 

XIR: 01101 

XIR: 01110 

XIR: 01111 

XIR: 10000 
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7.7.  PROTOTYPE ARRAY MANAGEMENT 

This section describes some concepts related to how the Nil 000 microcontroller software manages the 
prototype array. These include the Bad Column Table, sectors, the PA Configuration Table, backed up 
networks, and the PA Usage field in PPRAM. 

7.7.1.     Bad Column Table 

The Bad Column Table (BCT) on each NMOOO contains information specific to that particular chip.  It 
should be saved to a neuron file in case it is ever accidentally erased. It contains the bad column 
information generated during wafer sort and finalized at package sort. It is stored in the last usable 
column in the prototype array (usually column 1023). The other column in the BCT block (normally 
column 511) is not available for storage of prototypes. The host may store a backup copy of the BCT in 
this other column.  Initialization microcode reads the BCT and marks any bad columns Disabled in 
PPRAM. 

To avoid possible problems during repetitive programming and erasing, the BCT has data for bad blocks, 
not just bad columns. If one column is bad, then the other column is unusable and also considered bad. 
In the BCT's Bad Block Map, each block is represented by two bits, and one PA row stores the data for 
four blocks. The Bad Block Map occupies 128 rows, representing all 512 blocks. Each row has the 
following format: 

Bits 9-8:      Number of bad blocks in this group of four: 00(0), 01 (1), 10(2), 11 (3 or 4) 
Bits 7-0:      Data for four blocks (for example: 0 through 3, with 3 in the low order bits) 

10 Bad block 
01 Good block 
00, 11    Only occurs if BCT is corrupted 

Rows 0-1 and 144-145 contain defined patterns that are not likely to occur by accident. These serve to 
identify the Bad Column Table. 

The row by row format of the Bad Column Table is as follows: 
0 270h - Defined bit pattern to identify this column. 
1 18Fh - Defined bit pattern to identify this column. 
2-4 Serial Number 
5-6 Sorted Date 
7 Reserved 
8 Number of bad blocks 
9-15 Reserved 
16-143 Bad Block Map 
144 190h - Defined bit pattern to identify this column. 
145 26Fh - Defined bit pattern to identify this column. 
146-255 Bad Column List (two entries for each bad block) 
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7.7.2.     Sectors 

The PADCU_ARR register determines the starting row and column numbers for the area of the prototype 
array being used by the currently active network. This effectively divides the prototype array into 64 
"sectors", where each sector can potentially be the starting point for a network. Depending on the number 
of features and the number of prototypes, the prototype array can potentially hold features for up to 64 
networks. Sectors are numbered as shown. 

0 

32 

64 

96 

128 

160 

192 

224 

A network can occupy more than one sector; in fact, that is normally the case. The sector number for a 
network is the number of the sector whose first row and column are the first row and column of the 
network. 

The default sector number is 0, and the sector number currently must be 0 for learning. PADCU_ARR is 
not accessed directly by the host. To set the sector number, the host writes the number to GRAM at 
location 1062 hex. The microcode sets PADCU_ARR according to that GRAM location when it enters 
classification mode. 

If there are multiple networks on the chip, switching from one network to another also involves loading 
PPRAM with the data forthat network and restoring other parameters associated with the network (e.g., 
the number of features, column number of the column after the last used prototype, learning paradigm, 
etc.). Even if there is only one network, all of these things have to be reloaded after the chip is powered up 
or reset. (The features in the prototype array are nonvolatile and do not have to be reloaded.) 

If there is enough space, all of the volatile information for a network can be backed up in the prototype 
array itself, and then the RESTORE command can be used to activate a specific network, reloading all of 
its volatile parameters including the sector number. The RESTORE command requires a PA Configuration 
Table (see next section). 

7.7.3.     PA Configuration Table 

The Prototype Array Configuration Table (PACT) contains useful information about all networks present in 
the chip. The PACT is never written to by the Nil 000 microcontroller software.  If it exists, the host is 
responsible for keeping it up to date. The PACT occupies one block (two columns) in the PA, and it will be 
in the last usable block before the one containing the BCT. For example, if the BCT is in column 1023 and 
the PACT exists, it will be in columns 510 and 1022 (provided that block 510 is not disabled). 

On initialization, the microcode sets the PA usage field in each PPRAM entry according to the information 
in the PACT. The RESTORE command uses the PACT to locate the backed up parameters for a specific 
network. The format of the PACT is as follows: 
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7.7.3.1. High Column 

0 18Fh - Defined bit pattern to identify this column. 
1 190h - Defined bit pattern to identify this column. 

0                            2           Number of networks in the PA (0-64). 
3-7        Reserved. 
8-15      Boolean "sector taken" bit map - 64 bits. A sector is "taken" if columns are used for prototypes 

starting with the first column in the sector. One implication is that the sector is not available for 
learning. 

8 
9 

10 
•                                              11 

12 
13 
14 
15 

X X 0 8 10 18 20 28 30 38 
X X 1 9 11 19 21 29 31 39 
X X 2 A 12 1A 22 2A 32 3A 
X X 3 B 13 1B 23 2B 33 3B 
X X 4 C 14 1C 24 2C 34 3C 
X X 5 D 15 1D 25 2D 35 3D 
X X 6 E 16 1E 26 2E 36 3E 
X X 7 F 17 1F 27 2F 37 3F 

16-31 
32-63 

64-127 

Reserved. 
Backup Block List. A list of all blocks (except the BCT and PACT blocks) used for storage of data 
in 10-bit mode. Each entry in the list occupies two rows, specifying a range of blocks. The end of 
this list is marked by a 0, 0 entry. 
First row: First block number (the number of the low column). 
Second row:        Number of consecutive Backup blocks (bad blocks aren't counted). 
Row Usage Table. For each sector, one row at row number (64 + sector number). 
Specifies only the number of rows used by 5-bit data (i.e., prototypes). This number includes 
Backup data in 5-bit mode (method 1), if any. Any rows used within a sector must start with the 
first and have no gaps. 

128-255 Network Identification Table. 
For each sector, two rows of information starting at row number (128 + 2 * starting sector 
number). 
First row: 10-bit Network ID assigned by host (if 0, no network starts here). 
Second row:        10-bit CRC generated by host. 

7.7.3.2. Low Column 

The low column contains a Network Information Table. For each sector, there are four rows of information 
starting at row number (4 * starting sector number). This information is not relevant unless the Network 
Identification Table in the high column indicates that there is a network with that sector number. 

First row 

Second row 
Third row 

Fourth row 

Bit 9 Backed up in PA? (0 = No, 1 = Yes). 
Bit 8 Backup method (0 = method 0, 1 = method 1). 
Bits 7-0     Row number where Backup data begins. 
Column number where Backup data begins. 
Number of features in network. (Does not include features used for method 1 backup 
data.) 
Number of prototypes in the network. 
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7.7.4.     Backed Up Networks 

7.7.4.1. Backup Header 

If the host system chooses, and if there is enough space, volatile information associated with networks can 
be backed up in unused areas of the prototype array. PA columns are dedicated to Backup storage a 
block (2 columns) at a time. It will not be legal to use one column for 5-bit data and use the other column 
in the same block for 10-bit data. If more than one column is used for backup data for any one network, 
the last row of each Backup column (excluding the last) will point to the next column where the data is 
continued. 

For each network that is backed up in the PA, the Backup information begins with 16 rows of data 
describing the network as a whole. (The host can get this information for the active network via the 
READCONFIG command.) This 16-row block of data is referred to as the Backup Header. When stored in 
PA, the information starts at the row and column number indicated in the PA Configuration Table. 

Learning Paradigm (10 bits) 
Maximum Radius[12:10] | Minimum Radius[12:10] I Smoothing Factor Exponent Offset 
(4 bits) 
Maximum Radius[9:0] 
Minimum Radius[9:0] 
ParameterA[15:8]|00 
00 | Parameter A[7:0] 
Parameter B[15:8] | 00 
00 | Parameter B[7:0] 
Parameter C[15:8] | 00 
00 | Parameter C[7:0] 
Parameter D[15:8] | 00 
00 | Parameter D[7:0] 
Parameter E[15:8] | 00 
00 | Parameter E[7:0] 
Parameter F[15:8] | 00 
00 | Parameter F[7:0] 

row 1: 
row 2: 

row 3 
row 4 
row 5 
row 6 
row 7 
row 7 
row 9 
row 10 
row 11 
row 12 
row 13 
row 14 
row 15 
row 16 
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7.7.4.2. PPRAMFormat 

In addition to the Backup Header, the contents of the PPRAM entries for the prototypes in the network are 
backed up in the PA.  In PPRAM, the data has the following format: 

PPRAM3[15:0]:   Count (unsigned, 16 bits) 
PPRAM2[15:14]: PA Usage field 

00: unused column 
01: column contains data in 5-bit format 
10: column reserved for 10-bit format data 
11: reserved encoding 

PPRAM2[13]:      Disable bit, set to 1 for bad (unusable) columns 
PPRAM2[12:0]:   Threshold Radius (13 bits) 
PPRAM1[15:8]:   Smoothing Factor (8 bits) 
PPRAM1[7]: Used bit 
PPRAM1[6]:        Probabilistic bit 
PPRAM1[5:0]:     Class number (6 bits) 

7.7.4.3. Backed Up PPRAM Data 

When PPRAM data is backed up in the prototype array, only 45 bits of each 48-bit entry are saved   The 

2 £?£ HK 3nd
t 
the DJSf! bit are "0t Saved' since the information they contain can be inferred from 

the fact that the entry is backed up. (It would not be necessary to save the Used bit either but it is saved 
anyway for simplicity's sake. The microcontroller will force the Used bit to 1 when thene^ork is rested 
regardless of what was saved.) There are two methods for backing up the PPRAM data   The me hod 
used is indicated in the PA Configuration Table. memeinoo 

7.7.4.3.1. Method 0 

Store each PPRAM entry in 10-bit mode in 4.5 rows of a 10-bit PA column. The PPRAM entries are saved 
in consecutive order starting immediately after the Backup Header. Only PPRAM entries for he prototvoes 
are saved; i.e., there are no gaps in the storage for disabled columns or 10-bit coluZ The PPRAMdJS 
for two prototypes fills up 9 rows of a PA column, as follows: 

row 1: prototype 1 PPRAM3[9:0] 
row 2: prototype 1 PPRAM3[10] | PPRAM2[12:4] 
row 3: prototype 1 PPRAM 1 [15:10] | PPRAM2[30] 
row 4: prototype 1 PPRAM 1 [9:0] 
row 5: prototype 1 PPRAM3[15:11] | prototype 2 PPRAM3M5H1 
row 6: prototype 2 PPRAM3[9:0] 
row7: prototype2 PPRAM3[10] | PPRAM2[124] 
row8: prototype2 PPRAM1[15:10] | PPRAM2[30] 
row 9: prototype 2 PPRAM1[9:0] 

ThlMPP?AM entrilS are *aved in this format u"til the backup column has less than 10 empty rows left 
Then the column number of the next column, where the PPRAM data will be continued starting in row 0 
gets written into row 255.  It is okay if a few rows are left unused between the laTpPRAMI pair in a 

ofaCppURAM T-and I* ^^the neXt b3CkUp C0,Umn' as lon9 as *t is less than 9 unused rows   A pair 
of PPRAM entries will not straddle a column boundary, even if there are more than 4 but less than 9 rows 
■variable.at the end of a column. There will never be a single backed up PPRAM£*>by ftsel   unlessThe 
network has an odd number of prototypes and this is the last one. 

Assuming that the Backup information for a network begins at row 0 of a backup column (it doesn't have 

cir„*sr
BÄ„^in

UP^ sssr ^up ,o ° PPRAM ^ ««^ 
7.7.4.3.2. Method 1 

Store each PPRAM entry in 5-bit mode in 9 rows of its own PA column, immediately following the last 

K,ZI Kr'911* f°,r *? netW°rk- ThiS meth0d mi9nt be Preferred " there are some unuseJ row^^ after 
the last weight ,n a network, especially if you can fill in 9 more rows without crossing a selr bounda^    t 
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saves columns, because only the 16 rows of Backup Header information need to be stored for this network 
in a dedicated backup column. Use the following format: 

rowl:    PPRAM3[15:11] 
row 2:    PPRAM3[10:6] 
row 3:     PPRAM3[5:1] 
row 4:    PPRAM2[12:9] | PPRAM3[0] 
row 5:    PPRAM2[8:4] 
row 6:    PPRAM1[15] | PPRAM2[3:0] 
row 7:    PPRAM1[14:10] 
row 8:    PPRAM1[9:5] 
row 9:    PPRAM1[4:0] 
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7.7.5.     PA Usage Field 

In the NHOOO microcontroller software, bits 15-14 of PPRAM2 are defined as the PA Usage field. They do 
not affect the hardware. This field indicates whether the corresponding PA column contains any 
meaningful data: 

00 This column is currently not used for anything. 
01 At least one row in this column has been programmed with 5-bit data. 
10 The host has reserved this column for data in 10-bit mode. 
11 Reserved. 

The host is not permitted to alter the PA Usage field directly. Microcontroller software ignores the 
corresponding bits in the input data for PPRAMWRITE, and for RAMWRITE when the target address is in 
the PPRAM2 address range. (The host can override this restriction by setting bit 0 of the diagnostic word 
in GRAM at address 106Ah, but that is not recommended.) Revision 2.0 microcontroller software 
maintains the PA Usage field as follows: 

1. PA columns must be reserved for 10-bit data a block (2 columns) at a time. 10-bit and 5-bit data are 
not permitted in the same block of PA. 

2. Initialization microcode sets the PA Usage field to 10-bit (10) for both columns in the BCT and PACT 
blocks, and for both columns in each block that is reserved for 10-bit data in the Backup Block List in 
the PACT. 

3. Initialization microcode sets the PA Usage field to 5-bit (01) for each column that contains prototype 
features for any network. This information is also derived from the PACT. 

4. Initialization microcode sets the PA Usage fields for all other columns to unused (00). 

5. LEARNBEGIN clears the PA Usage fields of all columns on the chip, except 10-bit (10) and disabled 
columns. 

6. LEARNVECTOR sets the PA Usage field of the column indicated by NEXT_PT to 5-bit (01).  If the 
column in NEXT_PT is 10-bit (10) or disabled, it is skipped. Successive columns will continue to be 
skipped until one is found which is 5-bit (01) or unused (00), up to the end of the PA. If no such 
column is found, a CHIP_FULL error is returned. 

7. A 5-bit COLUMNWRITE sets the PA Usage field of the indicated column to 5-bit (01), provided the 
column is currently marked unused (00) or 5-bit (01). The other column in the block is not affected. 
The write is not performed and generates an error if the column is marked 10-bit (error 
BAD_BIT_MODE), or disabled (error DIS_COLUMN_ERROR). 

8. A 10-bit COLUMNWRITE sets the PA Usage fields of both columns in the block to 10-bit (10). The 
write is not performed and generates an error if either column in the block is 5-bit (01) or disabled. 
Furthermore, the target column must be in an erased condition (i.e. all 0's) before issuing this 
command, otherwise NOT_ERASED is returned. 

9. BLOCKERASE sets the PA Usage fields of both columns in the block to unused (00), regardless of 
current usage. An attempt to erase a disabled block generates an error (DIS_COLUMN_ERROR). 

10. A COLUMNERASE of a 5-bit column sets its PA Usage field to unused (00), unless the column is 
disabled (an error is returned if so). The PA Usage field of the other column in the block is unaffected. 

11. A COLUMNERASE of a 10-bit column does not affect the PA Usage field. Both columns in the block 
remain 10-bit. Unlike 5-bit COLUMNERASE, all bits of the other column in the block are preserved 
(see note below). 

7.7.5.1. Cautionary Note 

Revision 2.0 of the microcontroller software assumes all 256 rows of a column marked 5-bit or 10-bit 
contain valid data. Therefore, whenever IRAM is used to save and restore a column or parts of a column, 
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any rows that were erased (OOOh) will become 155 hex. This value still translates to a zero in 5-bit mode, 
but increases the amount of subsequent data-handling for the microcode. The following operations can 
give rise to this situation: 

1. Writing to a 5-bit column.  If a subset of the column is written, any 10-bit zeroes (OOOh) in the rest of 
the column become 5-bit zeroes (155h). If the other column in the block is marked 5-bit, any 10-bit 
zeroes (OOOh) in it will become 5-bit zeroes (155h). 

2. Erasing a 5-bit column.  If the other column in the block is marked 5-bit, any 10-bit zeroes (OOOh) in it 
will change to 5-bit zeroes (155h). 

7.8.    ADDING CUSTOMIZED MICROCODE 

Nestor's standard microcode is, to some extent, modular. This makes it possible to choose subsets of the 
implemented commands, opening up space in PGFLASH for customized functions. The microcode source 
currently resides in one required file and four optional files: 

• NIUCODE - This is the main file. It contains the initialization code, the dispatcher loop and the 
following commands: READCONFIG, CLASSMODE, INPUTLOAD, COLUMNREAD PPRAMREAD 
PPRAMWRITE, RAMREAD, and RAMWRITE. 

• PAPROG - The SETCLOCK command and all of the low level routines that are needed for 
programming or erasing the prototype array.  This file must be included if either LEARNRBF or 
CLMNWR is included. 

• LEARNRBF - LEARNBEGIN, LEARNVECTOR, LEARNEPOCH, and LEARNEND commands. 

• CLMNWR - COLUMNWRITE, COLUMNERASE, and BLOCKERASE commands. 

• RESTORE - The RESTORE command. 
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8.      GLOSSARY 

Bayes Rule—A statistical approach used in pattern classification when overlap exists among the fields of 
influence of prototype classes. The mathematical form of the Sayes rule is: P(<o|x) = p(x|co) P(<D) / p(x), 
where the a priori probability P(a>) and the conditional probability density p(x|o>) are known. In the context 
of the Ni1000 Accelerator, a is a classification class, and x is an input pattern. Bayes rule shows how the 
input pattern x changes the a priori probability P(co) to the a posterior probability P(o>|x). Under this rule, 
input patterns are assigned to the class with the highest PD, P((B|X). 

City Block Distance—Also called "Manhattan Distance", or "L1 Norm" in mathematical terms, a measure 
of the distance between an input vector and a prototype vector. Absolute differences between 
corresponding components of the two vectors are summed to form this distance. "City Block" refers to the 
orthogonality in the distance computing. It is used in the NMOOO Recognition Accelerator to simplify the 
implementation. 

Class—A category into which prototypes are grouped and input patterns are classified. The Nil000 
Recognition Accelerator supports up to 64 classes. 

Class Firing—If at least one prototype of a class fires (see prototype firing), the class is said to fire. Each 
prototype has a class ID number to indicate the class to which it belongs. 

DCU—One of the distance calculation units. There are 512 DCUs in the NMOOO Accelerator. 

Deterministic Radial Basis Function—A radial basis function that does not overlap with an RBF of 
another class so that classifications done with it are deterministic. Compare Probabilistic Radial Basis 
Function. 

Deterministic RBF—See Deterministic Radial Basis Function. 

Dimension—The number of components in the input and prototype vectors. The NMOOO Recognition 
Accelerator supports vectors with up to 222 components (or dimensions). 

Feature Space—The complete range of possible patterns of input data. A point in a multidimensional 
feature space corresponds to an input vector. Classification defines regions within the feature space. The 
NMOOO Accelerator supports feature space of up to 222 dimensions and combines small units of feature 
space into complex regions representing classes. 

Field of Influence—A region in the feature space associated with each prototype, subsequently with each 
class, and indicated by the value of the threshold distance. An input pattern is within the field of influence 
of a class if its city block distance to one of the prototype vectors in the class is less than the threshold 
distance of that prototype. 

Flash EPROM—Electrically erasable and programmable read-only memory. Unlike conventional EPROM 
which requires physical removal from the computer and UV exposure, erasing and programming on the 
flash memory may be done in-system by applying high electrical voltage to the memory cells. The contents 
of the flash memory are preserved after power-down. The NMOOO Recognition Accelerator uses flash 
memory to store microcontroller program (PGFLASH) and prototype array (PA). 

GRAM—General-purpose random-access memory, used by the on-chip microcontroller of the NMOOO 
Accelerator. 

Incremental Learning—Addition of new prototypes to the existing base and/or adjustment of parameters. 
This is the normal learning mode on the chip, assuming initialization has occurred, at least one prototype 
is stored, and some training had been done. 

Influence Field—Same as field of influence. 
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IRAM—The on-chip input buffer random access memory. 

Lambda (X.)—Same as threshold distance. 

Learning—Also called training or adaptation, a process of selectively choosing a set of prototypical 
vectors from the training data and adjusting appropriate parameters associated with those vectors. Ideally 
the prototypical vectors chosen are best indicators of output based on input. The parameters associated 
with each prototypical vector include the threshold distance for RCE, the amplitude constant and decay 
constant of the exponential distribution function for PRCE. 

Manhattan Distance—See city block distance. 

MC—The on-chip microcontroller. 

Minimum Threshold Distance—A prescribed global constant, intended to limit the number of prototypes 
selected in the learning process by forcing each prototype to have a minimum region of influence in the 
pattern space. 

MU—The on-chip mathematical unit. 

MURAM—The on-chip mathematical unit RAM. There are two MURAMs. 

Neural Network Classifier—An implementation of an algorithm that accepts input patterns and outputs 
classification information. The Nil 000 Recognition Accelerator is such a classifier that uses the RCE 
and/or PRCE algorithms. 

Neuron—In biology, a cell in the brain that produces an output signal in response to multiple input signals 
In the NilOOO Recognition Accelerator, it is a structure that computes the city block distance between an 
input vector and a pre-stored prototype vector. For RCE, this distance is then compared with the radial 
threshold distance associated with the prototype vector to produce a binary-valued output. For PRCE, this 
distance is used to compute a floating-point number which enters the PDF calculation. 

ORAM—The on-chip output buffer random access memory. 

PA—The on-chip prototype array. 

PADCU—PA and DCUs. 

Parzen-Windows—A technique to compute probability density functions. It assumes that within a small 
region of the feature space, the density function does not vary appreciably, and the probability that a 
pattern of class C falls within the region is simply the number of vectors in class C in the region Kc 
divided by the total number of vectors in the feature space. In this technique, Kc = E 4>(p0 - p(k)) where the 
sum is over all patterns p(k) in class C, and pO is the center of the region. The window function <t>(f - f(k)) = 
1, if |f - f(k)| is less than a threshold value, and 0 otherwise. The threshold value defines the reqion of 
estimation. a 

Pattern—An input vector to be classified. The NI1000 Recognition Accelerator can accept input vectors 
with up to 222 dimensions, each of which has a 5-bit resolution. 

PDF—See probability density function. 

PGFLASH—Flash memory used in the NI1000 Accelerator to store the program for the microcontroller 
Default microcontroller program supports RCE or PRCE, and PNN algorithm. PGFLASH is erasable and 
programmable. See Flash EPROM. 

PNN—See probabilistic neural network. 
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PPRAM—The on-chip prototype parameter random-access memory. There are three PPRAMs to store, for 
each prototype vector, its class ID, decay constant, receptive field radius, count, and flags. 

PRCE—See probabilistic Restricted Coulomb Energy. 

Probabilistic Neural Network—A pattern-recognition algorithm that classifies patterns using probability 
distribution and Bayes rule. All training patterns are stored and used to estimate the probability density 
functions. Learning is rapid (one pass through the training set) and the continuous-valued (Gaussian) 
estimators perform spatial averaging, resulting in improved PDF estimates in regions of low sample 
density. A drawback is that memory usage is inefficient so that large data sets require large networks. 

Probabilistic Radial Basis Function—A radial basis function that overlaps with an RBF of another class 
so that classifications done with it are probabilistic. Compare Deterministic Radial Basis Function. 

Probabilistic RBF—See Probabilistic Radial Basis Function. 

Probabilistic Restricted Coulomb Energy—A pattern-recognition algorithm that combines RCE and PDF 
estimation. The Nil000 Accelerator computes simultaneously the RCE (firing class IDs) and PRCE (PDFs) 
results, and the user can select to output either or both. The classification decision is made using Bayes 
rule in the case of multiple firing classes. 

Probability Density Function—A specification of the dependence of prototype-classes distribution on an 
input pattern, used with Bayes rule to determine the class to which the input pattern belongs. Functional 
forms can vary, and are chosen to be the sum of decaying exponentials in the Nil000 Accelerator. 

Prototype—A stored vector that serves to represent the typical features of the patterns to be classified. 
The Nil000 Recognition Accelerator supports up to 1000 such stored vectors of 222 dimensions each, and 
up to 8000 stored vectors of 26 dimensions or less. These vectors are selected from the training data set 
during the learning process, and are grouped into up to 64 classes. 

Prototype Firing—An indication of a match between an input vector and a stored prototype. Firing occurs 
when the input vector is within the influence field of the prototype. 

Radial Basis Function—A radially symmetric function that has a maximum at some point in its input 
space and that falls off to zero rapidly at large distances from that point. The region around the symmetry 
point can be thought of as an influence (or receptive) field since input vectors which fall near this point will 
result in non-zero response from the RBF logic. The RBF used in the Nil000 Accelerator is a decaying 
exponential function. 

RBF—See radial basis function. 

RCE—See Restricted Coulomb Energy. 

Restricted Coulomb Energy—A pattern-recognition algorithm that is supported by the Nil000 
Accelerator. Training is supervised and selective, in the sense that not all training vectors are committed 
as prototypes. Several passes of the entire training set may be required. Classification is done using a set 
of RBFs for the prototype vectors. The advantage is that RCE may not require as large a network as PNN. 

Threshold Radius—A parameter associated with each prototype that defines the prototype's field of 
influence. It is determined during the learning process. When the city block distance of an input vector to 
the prototype is less than the threshold radius, a match is found and the prototype fires. See also field of 
influence, and minimum threshold distance. 

8-3 11/6/95 



NMOOO User's Guide 

9.      INDEX 

+12 Volt Programming Supply 3-37 
+5 Volt Memory Supply 3-37 
+5 Volt Supply 3-37 

64/32# 3-36 
64-Bit or 32-Bit Data Bus 3-36 

A[0:15] 3-35 
Abus 4-1 
Access Modes 4-3, 5-1 
Active-Low Signal Names x 
Address Bus 4-3 
Address Strobe 3-35 
ADS# 3-35 
AIO 4-3 
Alignment 5-16 
Assembler 6-1 

Bad Column Table 5-44 
Bayes Decision Theory 2-7 
BERR# 3-36 
BLAST* 3-35 
BRDY# 3-36 
Burst Last 3-35 
Burst Ready 3-36 
Bus Cycles 4-5 

Burst 4-5, 4-6, 4-9, 4-11, 4-12 
Definition and Control Signals 4-7 
I/O-Register Read or Write 4-6, 4-8 
ERAM Burst Write 4-11,4-12 
1RAM Non-burst Write 4-9,4-10 
Non-burst 4-5, 4-6, 4-8, 4-9, 4-10 
ORAM Burst Read 4-12,4-13 
ORAM Non-burst Read 4-11 
PGFLASH Read or Write 4-8, 4-9 
Reset 4-13,4-14 

Bus Error 3-36, 4-7 
Bus Interface 3-15 
Bus Operations 4-1 
Buses 3-24, 4-1, 4-2 

ABUS 3-24 
AIO 4-3 
Data I/O 4-1 

DBUS 3-24 
DIO 4-1,« 
Internal Address 4-1 
Internal Data 4-1 
PABUS. 3-24, 4-1,4-4 
PDBUS 3-24, 4-1, 4-4,4-s 
Program Address 4-1 
Program Data 4-1 

C 

Chip Select 3-35 
City-block distance 2-5 
City-block distances 3-5 
Class 2-1 
Classification 2-4, 5-64 
Classification Timing 3-32 
Classifier 3-1, 3-3 
CLK 3-35 
Clock 3-35 
CMR 5-4 
CMRregister 4-1, 4-s, 4-13 
Computational Precision 3-22 
Control and Status Registers 5-45 
CRA 5-11 
CRB 5-12 
CS# 3-35 

D 

D[0:63] 3-35 
Data 3-35 
Data Bus 4-3 
Data I/O Bus 4-1 
Dbus 4-1 
DIM 5-4 
DIO 4-3 

DIO Bus 4-1 
Distance Calculation Units 3-1, 3-4 

E 

Error 3-36 
ERROR* 3-36 
Errors 3-32 
Exponential decay 2-7 

F 

Feature space 2-3 
Feature vector 2-1 
Features 1-1 
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Field of influence 2-4 
Floating Point Format 

16-Bit Internal 3-23 
32-Bit IEEE 3-24 

Floating-point format 3-2,3-16 
16-bit internal 5-21 
32-bit IEEE 5-21 

Format 
RCE Classification Results 5-20 

G 

General-purpose RAM 3-2 
GRAM 5-25,5-36 
Ground 3_37 

H 

Hardware Architecture 3-1 
Hardware Setting Registers 5-46 
Hardware-Controlled Access Modes 4-1 4-3 
HS1  .5-6 

.5-7 HS2. 

I/O Registers 3-15, 3-17, 5-3, 5-25 
CMR 5_4 
CRA 5_n 

CRB 5-12 
DIM 5-4, 5-5 
HS1 5-6,5-7 
HS2 5.7,5-8 
IDR 5-5 
IIR 5-10 
OP 5-13 
SSR 5-5,5-6 
XIR 5-9,5-10 

IACK# 3-36 
Identification Register  5.5 
IDR !."5-5 
HR 5-10 
Instruction Sequences 

Classification 5-64 
PGFLASH Programming 5-33 
PPRAM Access 5-59 
Prototype Array Access 5-51 

Internal Address Bus 4-1 
Internal Address Map 5-24 

Overview 3-24 
Internal Data Bus 4.J 
Interrupt 5-37,6-57 
Interrupt Acknowledge 3-36 
Interrupts 3-31 
IRAM 3-2, 3-4, 3-15, 3-18, 5-14, 5-26 

Access Addresses 5-14 
Address assignment 5-15 

Pre-Write Latch 3-19, 5-15 
Software-controlled modes 5-14 
Write by the Host 5-17 

Learning 2-4, 5-67 
Little-Endian Convention x 

M 

Manhattan distance. 
Math Unit  

Pipeline  
Math UnitRAMs  
MC#  

 2-5 
. 3-1, 3-4, 3-10 
 3-11 
 3-4,3-13 
 3-36 

MCINT# 3-36 
Memory and Register Address Map 5-25 
Microcontroller 3-1, 3-24, 3-36 

Addressing Modes 6-2 
Architecture 3-24 
Flags 3-28, 6-1, 6-2, 6-5, 6-48 
Instruction Set 3-28, 6-7 
Interrupt 5-37, 6-57 
Program Memory 3-29 
Registers 3-27, 6-1 

Microcontroller flags: 6-48 
Microcontroller Instructions 3-28 

Conditional Jumps 6-4 
Data Transfer Operations 6-6 
Flag Operations 6-5 
Flags Cross Reference 6-48 
Flags Cross-Reference 6-48 
Math and Logical Operations 6-7 
Stack Operations 6-5 
Subroutine Calls 6-5 
Summary 6-4 

Microcontroller Instructions: 6-7 
Microcontroller Interrupt 3-36 
Modes 

Access 4_3 
Hardware-Controlled Access 4-3 
NORMAL 4-1, 4-3,4-4, 4-5, 4-6, 4-9, 4-10 
pG 4-1,4-3, 4-4, 4-5, 4-8 
RESET 4_i 4_5 

MULTCHIP# "...3-36 
Multichip Add-In Board 1-3 
Multi-Chip Operation 3-36 
Multichip systems 3.32 
MURAMs 3-4, 3-13, 5-27, 5-60 

Class List MURAMs 3-10, 3-13, 3-15, 5-61 
Class-List MURAM 5-62 
FlagMURAM 3-10, 3-13, 5-61 
MURAMCR Register 5-64 
Probability MURAMs3-10, 3-13, 3-15, 5-61, 5-63 
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registers 5-27 
Software-controlled mode 5-63 

N 

NORMAL 4-1, 4-3,4-4, 4-5, 4-6, 4-9, 4-10 
NORMAL mode 5-1 
Notation x 

O 

OP 5-13 
ORAM 3-2, 3-4, 3-13, 3-16, 3-21, 5-18, 5-26 

Access Addresses 5-18 
Bit assignment 5-19 
Output Possibilities 5-20 
Pre-Write Latch 3-22, 5-19 
Read and Write by the Microcontroller.... 5-21 
Read by the Host 5-22 
Retrieving Both Class and Probabilistic Data 

by the Host 5-23 
Software-controlled modes 5-18 

PAbus 4-1, 4-4 
PADCU Registers 5-26 
Pattern Recognition 2-1 
PDbUS 4-1, 4-4, 4-5 

PDF 2-1 
PG 4-1, 4-3, 4-4, 4-5, 4-8 
PGmode 5-1 
PGFLASH.3-1, 3-29, 4-1,4-4, 4-s, 4-8, 4-13, 5-28 

Erase 5-34 
Erase Verify 5-34 
PGF_ADR Register 5-29 
PGF_CR1 Register 5-30 
PGF_CR2 Register 5-32 
PGFDR Register 5-30 
PGF_SR Register 5-33 
Program 5-35 
Program Verify 5-36 
Read 5-34 
Registers 3-29,5-27 
Software-controlled mode 5-28 
Standby 5-33 

Pipeline 3-10,3-33 
PNN 1-1,2-5 
PPRAMs 3-7, 5-27, 5-55 

Read and Write by the Microcontroller 5-59 
registers 5-27, 5-58 
Software-controlled mode 5-57 
Used flag 5-57 
Word Format 3-8, 5-56 

PRCE 2-4,2-6 
Principles Of Operation 2-1 

Probabilistic Neural Networks 1-1, 2-5 
Probabilistic RCE 2-4,2-6 
Probability Density Function 2-1, 2-7 
Program Address Bus 4-1 
Program Data Bus 4-1 
programming 6-1 
Prototype Array 3-1, 3-4,5-5, 5-28 

Access 5-42 
ARR Register 5-48 
AUX Register 5-47 
Bad Column Table 5-43, 5-44 
CSA Register 5-46 
CSB Register 5-46 
DCU.DIM Register 5-51 
Erase by the Microcontroller 5-54 
MODE Register.-. 5-47 
NCA Register 5-51 
NCB Register 5-51 
Programming 3-7 
Programming by the Microcontroller 5-53 
Read by the Microcontroller 5-52 
Segmentation 5-49 
Software-controlled modes 5-43 

Prototype Parameter RAM 3-4, 3-7 

Radial Basis Function 2-4 
RBF 2-4 
RCE 2-4 
RDY# 3-35 
Registers 

I/O Registers 5-3 
MURAM register 5-64 
PADCU Registers 5-45, 5-46, 5-47, 5-50 
PGFLASH registers 5-29 
PPRAM registers 5-58 

Reilly-Cooper-Elbaum algorithm 2-4, 2-5 
Reset 3-30, 3-37, 4-1,4-3,4-s 

RESET mode 5-1 
RESET* 3-37 

Service Request 3-36 
Signal Descriptions 3-35 
SRQ# 3-36 
SSR 5-5 
System-Level Architecture 3-32 

T 

Threshold radius 2-5 
Timer 3-30, 5-25, 5-36, 5-37 
Training set 2-1, 2-4 
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V W 
Vcc 3.37 W/R# 3.35 
"ex 3.37 Write or Read 3-35 

> 3-37 x vss 3.37 
XIR 5.9 
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